
Deciding Bit-Vector Arithmetic with
Abstraction?

Randal E. Bryant1, Daniel Kroening2, Joël Ouaknine3, Sanjit A. Seshia4,
Ofer Strichman5, and Bryan Brady4

1 Carnegie Mellon University, Pittsburgh
2 ETH Zürich

3 Oxford University Computing Laboratory
4 University of California, Berkeley

5 The Technion, Haifa

Abstract. We present a new decision procedure for finite-precision bit-
vector arithmetic with arbitrary bit-vector operations. Our procedure
alternates between generating under- and over-approximations of the
original bit-vector formula. An under-approximation is obtained by a
translation to propositional logic in which some bit-vector variables are
encoded with fewer Boolean variables than their width. If the under-
approximation is unsatisfiable, we use the unsatisfiable core to derive an
over-approximation based on the subset of predicates that participated
in the proof of unsatisfiability. If this over-approximation is satisfiable,
the satisfying assignment guides the refinement of the previous under-
approximation by increasing, for some bit-vector variables, the number
of Boolean variables that encode them. We present experimental results
that suggest that this abstraction-based approach can be considerably
more efficient than directly invoking the SAT solver on the original for-
mula as well as other competing decision procedures.

1 Introduction

Decision procedures for quantifier-free fragments of first-order logic find wide-
spread use in hardware and software verification. Current uses of decision pro-
cedures fall into one of two extremes. At one end, a Boolean satisfiability solver
is directly employed as the decision procedure, with systems modeled at the
bit-level. Sample applications of this kind include bounded model checking [1,
2] and SAT-based program analysis [3]. At the other extreme, verifiers use deci-
sion procedures that reason over arbitrary-precision abstract types such as the
integers and reals (Z and R).

In reality, system descriptions are best modeled with a level of precision that
is somewhere in between. System descriptions are usually at the word-level; i.e.,
? B. Brady, R. E. Bryant, and S. A. Seshia were supported in part by SRC contract

1355.001. This research was also supported in part by the MARCO Gigascale Sys-
tems Research Center and by NSF grant CNS-0627734.

they use finite-precision arithmetic and bit-wise operations on bit-vectors. The
direct use of a SAT solver as cited earlier (also known as “bit-blasting”) is the
conceptually simplest way to implement a bit-vector decision procedure even
though it ignores higher-level structure present in the original decision problem.

However, the bit-blasting approach can be too computationally expensive in
practice (see, for example, [4]). There is therefore a pressing need for better
decision procedures for bit-vector arithmetic.

Contribution We present a decision procedure for quantifier-free bit-vector arith-
metic that uses automatic abstraction-refinement. This procedure is now im-
plemented in the verification system uclid, and we shall call it by this name
from hereon. Given an input bit-vector formula φ, uclid first builds an under-
approximation φ from φ by restricting the number of Boolean variables used
to encode each bit-vector variable (see details of this encoding in Section 3.1).
The reduced formula is typically much smaller and easier to solve. If φ is sat-
isfiable, so is φ, and the algorithm terminates. In case the Boolean formula is
found to be unsatisfiable, the SAT solver is able to output a resolution proof of
this fact, from which the unsatisfiable core used in this proof can be extracted.
Using this core, an over-approximation φ is built. This over-approximation uses
the full set of bits of the original vectors, but only a subset of the constraints.
This subset is determined by examining the unsatisfiable core of φ. If φ is un-
satisfiable, so is φ, and uclid terminates. Otherwise, the algorithm refines the
under-approximation φ by increasing, for at least one bit-vector variable, the
number of Boolean variables encoding it. Specifically, the new size is implied by
the value of this variable in the satisfying assignment to φ. This process is re-
peated until the original formula is shown to be either satisfiable or unsatisfiable.
The algorithm is trivially guaranteed to terminate due to the finite domain.

This approach has the potential of being efficient in one of the following two
scenarios:

1. The bit-vector formula is satisfiable, and a solution can be represented with
a small number of bits.

2. The bit-vector formula is unsatisfiable, and a relatively small number of
terms in this formula participate in the proof (i.e., the proof still holds after
replacing the other terms with inputs).

Whether this potential is fulfilled depends on one’s ability to find such small
solutions and small unsatisfiable cores6 efficiently: For the former, we search for
gradually increasing solutions in terms of the number of bits that are needed
in order to represent them, and hence are guaranteed to find a small one if it
exists; For the latter, modern SAT solvers are quite apt at finding small cores

6 A small unsatisfiable core of the CNF encoding of a formula does not necessarily
imply that a small number of terms from the original formula are necessary for the
proof, but obviously the two measures are correlated.

when they exist. In practice, as our experiments show, one of these conditions
frequently holds and we are able to detect it with our tool faster than analyzing
the formula head-on without any approximations.

Our approach can be seen as an adaptation to bit-vector formulas of our previ-
ous work [5] on abstraction-refinement of quantifier-free Presburger Arithmetic,
which, in turn, was inspired by the proof-based abstraction-refinement approach
to model checking proposed by McMillan and Amla [6]. Other than the differ-
ent problem domain (bit-vectors vs. Presburger formulas), we also extend the
theoretical framework to operate on an arbitrary circuit representation of the
formula, rather than on a CNF representation. We also employ optimizations
specific to bit-vector arithmetic. On the applied side, we report experimental
results on a set of benchmarks generated in both hardware and software veri-
fication. Our experiments suggest that our approach can be considerably more
efficient than directly invoking the SAT solver on the original formula as well as
other state-of-the-art decision procedures.

Related Work Current decision procedures for bit-vector arithmetic fall into one
of three categories:

1) Bit-blasting and its variants: Many current decision procedures are based
on bit-blasting the input formula to SAT, with a view of handling arbitrary
bit-vector operations. The Cogent [7] procedure mentioned earlier belongs to
this category. The most current version of CVC-Lite [8] pre-processes the input
formula using a normalization step followed by equality rewrites before finally
bit-blasting to SAT. Wedler et al. [9] have a similar approach wherein they
normalize bit-vector formulas in order to simplify the generated SAT instance.
STP [10] is the successor to the CVC-Lite system; it performs several array
optimizations, as well as arithmetic and Boolean simplifications on the bit-vector
formula before bit-blasting to MiniSat. Yices [11] applies bit-blasting to all bit-
vector operators except for equality.

2) Canonizer-based procedures: Earlier work on deciding bit-vector arithmetic
centered on using a Shostak-like approach of using a canonizer and solver for
that theory. The work by Cyrluk et al. [12] and by Barrett et al. on the Stanford
Validity Checker [13] fall into this category; the latter differs from the former
in the choice of a canonical representation. These approaches are very elegant,
but are restricted to a subset of bit-vector arithmetic comprising concatenation,
extraction, and linear equations (not inequalities) over bit-vectors.

3) Procedures for modular and bounded arithmetic: The third category of systems
focuses on techniques to handle (linear and non-linear) modular arithmetic. The
most recent work in this area is by Babić and Musuvathi [14], who encode non-
linear operations as non-linear congruences and make novel use of Newton’s
p-adic method for solving them. However, this approach does not treat some
of the operations that we handle such as integer division, and seems harder
to extend to new operations. Brinkmann and Drechsler [15] use an encoding
of linear bit-vector arithmetic into integer linear programming with bounded
variables in order to decide properties of RTL descriptions of circuit data-paths,

but do not handle any Boolean operations. Parthasarathy et al. [16] build on
this approach by using a lazy encoding with a modified DPLL search, but non-
linear bit-vector arithmetic is not supported. Huang and Cheng [17] give an
approach to solving bit-vector arithmetic based on combining ATPG with a
solver for linear modular arithmetic. This approach is limited in its treatment of
non-linear operations which it handles by heuristically rewriting them as linear
modular arithmetic constraints.

McMillan and Amla [6] use a technique related to ours in order to accelerate
model checking algorithms over finite Kripke structures. Specifically, they invoke
a bounded model checker to decide which state variables should be made visible
in order to generate a ‘good’ abstraction for the next iteration of model checking.
Gupta et al. [18] propose a similar model-checking framework, which among
others makes greater use of counterexamples and uses abstract models for both
validation and falsification attempts. Our approach differs from both of these in
the following respects: we use a bit-vector decision procedure instead of a model
checker, and we seek to eliminate constraints rather than variables (or gates or
latches, as the case may be).

Lahiri et al. [19] present an algorithm for deciding satisfiability of quantifier-
free Presburger arithmetic that is based on alternating between an under- and
an over-approximation. The under-approximation is constructed as in [5]. The
over-approximation uses a Craig Interpolant.

2 Preliminaries

Boolean Satisfiability We assume the reader is familiar with the basic termi-
nology of propositional logic such as resolution, Conjunctive Normal Form and
Tseitin encoding [20] (the linear procedure for converting an arbitrary proposi-
tional formulas to CNF based on the introduction of a new variable in each node
in the DAG representation of the formula).

We remind the reader that SAT solvers can be seen as progressing by performing
resolution steps. If the input formula is unsatisfiable, modern SAT solvers such as
zChaff [21] and MiniSat [22] can output a proof of unsatisfiability [23, 6] based on
resolution. The leafs of such proofs (the assumptions) constitute an unsatisfiable
core, i.e., an unsatisfiable subset of the clauses. In practice, SAT solvers tend
to find small unsatisfiable cores if they exist. Indeed, in most cases in practice,
formulas contain a large amount of redundant constraints.

Bit-Vector Arithmetic While we are not aware of a standard definition of
bit-vector arithmetic (it varies according to needs and tools), the fragment we
consider here includes finite-precision integer arithmetic with linear and non-
linear operators, as well as standard bit-wise operators, such as left shift, logical
and arithmetic right shifts, extraction, concatenation, and so forth. In fact, the
approach we use in this paper is orthogonal to the the set of operators, since it

only relies on a given finite width for each variable, as well as on the existence
of a propositional encoding of the formula.

At present, uclid supports the subset of bit-vector arithmetic with the following
operators: arbitrary Boolean connectives, relational operators, bitwise Boolean
operators, extraction, concatenation, shifts, addition, subtraction, multiplica-
tion, division, and modulo.

Each bit-vector expression is associated with a type. The type is the width of
the expression in bits and whether it is signed (two’s complement encoding) or
unsigned (binary encoding). Assigning semantics to this language is straightfor-
ward, e.g., as done in [15].

Note that all arithmetic operators (addition: +, subtraction: −, multiplication:
∗, division: ÷, modulo: %) are all finite-precision, and come with an associated
operator width.

Example 1. The following formula is valid when interpreted over the integers:

(x− y > 0) ⇐⇒ (x > y) (1)

However, if x and y are interpreted as bit-vectors, this equivalence no longer
holds, due to possible overflow on the subtraction operation. ut

Note also that the relational operators >,<,≤,≥, the non-linear arithmetic op-
erators (∗,÷,%) and the right-shift depend on whether an unsigned, binary
encoding is used or a two’s complement encoding is used. We assume that the
type of the expression is clear from the context.

This paper addresses the satisfiability problem for bit-vector formulas: given a
bit-vector formula φ, is there an assignment to the bits in φ under which φ
evaluates to True? It is easy to see that this problem is NP-complete.

Notation: We henceforth denote formulas in bit-vector arithmetic as φ, φ′, φ1,
φ2, . . ., and Boolean formulas as β, β1, β2,

3 The Decision Procedure

We now present the main contribution of this paper, a SAT-based decision pro-
cedure that operates by generating increasingly precise abstractions of bit-vector
formulas. The input to the decision procedure is a bit-vector arithmetic formula
φ. Let there be n bit-vector variables appearing in φ, denoted by v1,v2,v3, . . . ,vn.
Each variable vi has an associated bit-width wi.

3.1 Overview

We first give a broad overview of our decision procedure, which is illustrated in
Figure 1. Details of design decisions are described later in this section.

The decision procedure performs the following steps:

Under−approx.

Potential
calls to SAT solver

YES NO

YES

NO

Bit-Vec Formula φ

Satisfiable

Bit-Vec Formula φ

Unsatisfiable

Generate

Encode to
SAT

Generate

Abstraction
Abstraction

Is

Satisfiable?

Proof
SAT

Instance is
Satisfiable?

Input bit-Vec

Formula φ

Increase bit-vector encoding sizes to cover satisfying solutionSelect small

bit-vector

encoding sizes

Fig. 1. Abstraction-based approach to solving bit-vector arithmetic

1. Initialization: For each variable vi, we select a corresponding number si of
Boolean variables to encode it with, where 0 ≤ si ≤ wi.
We will call si the encoding size of bit-vector variable vi.

2. Generate Under-Approximation and Encode to SAT: An under-approximation,
denoted φ, is generated by restricting the values of each vi to range over a set
of cardinality 2si . Thus, the Boolean encoding of vi will comprise si Boolean
variables; note, however, that the length of the vector of Boolean variables
replacing vi remains wi.
There are several ways to generate such an under-approximation and its
Boolean encoding. One option is to encode vi using Boolean variables on its
si low order bits and then zero-extend it to be of length wi. The other is
to “sign-extend” it instead. For example, if si = 2 and wi = 4, the latter
would generate the Boolean vector [vi1,vi1,vi1,vi0] (where vij are Boolean
variables). Our implementation currently uses the latter encoding, as it en-
ables searching for solutions at both ends of the ranges of bit-vector values.
Further exploration of this aspect is left to future work.
A Boolean formula β is then computed from φ using standard circuit en-
codings for bit-vector arithmetic operators. The width of the operators is
left unchanged. The formula β is handed to an off-the-shelf SAT solver. The
only feature required of this SAT solver is that its response on unsatisfiable
formulas should be accompanied by an unsatisfiable core.
If the SAT solver reports that β is satisfiable, then the satisfying assignment
is an assignment to the original formula φ, and the procedure terminates.
However, if β is unsatisfiable, we continue on to the next step.

3. Generate Over-Approximation from Unsatisfiable Core: The SAT solver ex-
tracts an unsatisfiable core C from the proof of unsatisfiability of β. We use
C to generate an over-approximating abstraction φ of φ. The formula φ is
also a bit-vector formula, but typically much smaller than φ.
The algorithm that generates φ is described in Section 3.2. The key property
of φ is that its translation into SAT, using the same sizes si as those that
were used for φ, would also result in an unsatisfiable Boolean formula.

The satisfiability of φ is then checked using a sound and complete decision
procedure P for bit-vector arithmetic, e.g., a bit-blasting approach.
If φ is unsatisfiable, we can conclude that so is φ. On the other hand, if φ is
satisfiable, it must be the case that at least one variable vi is assigned a value
that is not representable with si Boolean variables (recall the key property
enjoyed by φ cited earlier). This larger satisfying assignment indicates the
necessary increase in the encoding size si for vi. Proceeding thus, we increase
si for all relevant i, and go back to Step 2.

Remark 1. Note that in this step it would be permissible to merely use a
sound, but not necessarily complete, bit-vector arithmetic decision procedure
P. In other words, we require that the outcome of P be correct whenever
this outcome is ‘Unsat’, but we can tolerate spurious purported satisfying
assignments. Indeed, in cases where P provides a satisfying assignment that
is not a satisfying assignment for φ, we can simply increase si by 1 for each
i such that si < wi, and go back to Step 2. Of course, bit-blasting is both
sound and complete.

Since si increases for at least one i in each iteration of this loop, this procedure
is guaranteed to terminate in O(n ·wmax) iterations, where wmax = maxi wi. Of
course, each iteration involves a call to a SAT solver and a decision procedure
for bit-vector arithmetic.

One of the main theoretical advances we make over the earlier work on Pres-
burger arithmetic [5] is a different method for generating the abstraction. We
describe this in the following section.

3.2 Generating an Over-Approximating Abstraction

The earlier work assumed that φ was in conjunctive normal form (CNF), whereas
our procedure works with an arbitrary directed acyclic graph (DAG) or circuit-
based representation, which is the format in which the input problems are gener-
ated. While φ can be transformed to CNF (in two different ways, listed below),
we argue below that neither of those approaches is desirable, primarily due to
the presence of if-then-else (ITE) expressions at arbitrary locations in φ.

1) Eliminating ITE using new variables: By giving each ITE expression in the
formula a fresh bit-vector variable name, we can eliminate all ITEs with just a
linear blow-up in the formula size. However, this also introduces a number of
new bit-vector variables that is linear in the size of the formula.

Note that the number of input bit-vector variables (vi’s) is usually a few orders
of magnitude smaller than the size of the formula φ. As a result, when treating
the new variables as inputs, the SAT solver’s performance has been observed to
suffer dramatically.

Of course, the values of these new variables are dependent on those of the vi’s,
and we can therefore attempt to restrict the SAT solver from case-splitting on

the bit-encodings of the new ITE variables. However, such restrictions have also
been found to severely adversely affect the run-time of current SAT engines. (It
amounts to changing the decision heuristic.)

2) Direct elimination of ITE: Another way of eliminating ITEs is to expand out
the cases without introducing new variables. However, this leads to a worst-case
exponential blow-up in formula size, which is commonly witnessed in practice.

We have therefore devised an abstraction-generation algorithm A that operates
directly on the DAG representation of φ, denoted Dφ. The inputs to A are Dφ,
the root node, and the unsatisfiable core C. The output is a DAG Dφ representing

φ, which is an over-approximation of φ. Let Nφ and Nφ be the set of nodes in
Dφ and Dφ, respectively.

Before describing the algorithm, we need to describe the process of transforming
the Boolean encodings of φ and φ into CNF. It can be seen as a generalization
of Tseitin’s encoding (which introduces fresh variables for internal nodes) to the
case of bit-vector formulas. Each internal node n ∈ Nφ is annotated with a set of
CNF clauses c(n) that relate the output of that node o(n) to its inputs, according
to the operator in the node. These output variables then appear as input to
the parent nodes of n. Then a conjunction of the clauses in {c(n)|n ∈ Nφ}
and one more unit clause with the variable encoding the top node, is the CNF
representation of φ. A subset of these clauses constitutes the UNSAT core C.
These definitions and notations also apply to Dφ, and we will use them for both
DAGs when the meaning is clear from the context. For a formula (or equivalently
a set of clauses) C we denote by vars(C) the set of variables that appear in C.

Procedure A (see Algorithm 1) recurses down the structure of Dφ and creates
Dφ. It replaces a Boolean node n with a new variable and backtracks, if and
only if none of the variables in vars(c(n)) are present in C7. It uses the functions
left-child(Dφ, n) and right-child(Dφ, n) to return the left and right child of n on
Dφ, respectively.

The replacement of Boolean nodes with new variables can be further optimized
using the “pure-literal rule”: if nφ is a Boolean-valued node and only appears
unnegated, replace it by True; likewise, if nφ only appears negated, replace it by
False. In other words, in such cases no new Boolean variable is needed.

Note that the resulting DAG Dφ can be embedded into Dφ. For each node
n ∈ Nφ we will denote by n̄ its counterpart in Dφ before the abstraction process
begins (after the abstraction some of them can be eliminated by simplifications).

The correctness of our abstraction technique is formalized by the following two
theorems:

Theorem 1. φ is an over-approximating abstraction of φ.

7 The same replacement criterion can be applied to bit-vector-valued nodes, which
can then be replaced with fresh bit-vector variables. Our implementation ignores
this option, however, and we shall therefore also ignore this possibility in the proof.

Algorithm 1 An algorithm for abstracting an NNF formula φ such that only
subformulas that do not contribute to the UNSAT core C are replaced with a
new variable.

procedure A(DAG Dφ, node n, unsat-core C)
if n is a leaf then return ;
end if
if n is Boolean and vars(c(n)) ∩ vars(C) = ∅ then

Replace n in Dφ with a new Boolean variable;
return ;

end if
A(Dφ, left-child(Dφ, n), C);
A(Dφ, right-child(Dφ, n), C);

end procedure

Proof. Let α be a satisfying assignment of φ. We show how to construct ᾱ, a
satisfying assignment for φ. First, for each variable v ∈ vars(φ) such that the
(leaf) node representing v is still present in Dφ, define ᾱ(v) = α(v). Second,
for each Boolean variable b ∈ {vars(φ) \ vars(φ)} (i.e., the new abstracting
variables) represented by node n ∈ Dφ, define ᾱ(b) to be equal to the Boolean
value of the corresponding node in Dφ, as implied by α. For example, if α(b1) =
True, α(b2) = False and the node b1 ∨ b2 was replaced with a new variable b,
then ᾱ(b) = True ∨ False = True. Clearly, ᾱ satisfies φ, since every node in Dφ

is evaluated the same as its counterpart in Dφ. Hence, if φ is satisfiable, then so
is φ, which implies the correctness of the Theorem. ut

Next, we have to prove termination. Termination is implied if we can show that
any satisfying assignment to φ requires width larger than the current one si (i.e.,
the width with which the unsatisfiable core C was derived), or, equivalently:

Theorem 2. The SAT encoding of φ with encoding sizes si is unsatisfiable.

Proof. We will prove that the CNF encoding of φ with sizes si contains the
clauses of the UNSAT core C.

Three observations about this encoding are important for our proof:

1. First, for an internal node n that represents a Boolean operator, each clause
in c(n) contains the output variable of its node. For example, the CNF of
an ‘and’ node o = a∧ b is (o∨¬a∨¬b), (¬o∨ a), (¬o∨ b), and indeed o, the
output variable of this node, is present in all three clauses. The same applies
to the other Boolean operators. Hence, we can write o(cl) for a clause cl to
mean the output variable of the node that cl annotates (hence, o(cl) ∈ cl).

2. Second, the same observation applies to predicates over bit-vectors. For sim-
plicity, we concentrate only on the bit-vector equality predicate. In such a
node, each clause contains either the output variable or an auxiliary variable
present only in this node. For example, the CNF of the node o = (v1 = v2)

for 2-bit bit-vectors v1 and v2, is the following (the first four clauses encode
x = (v1[0] = v2[0]), the other clauses encode o = x ∧ (v1[1] = v2[1]) where
x is the local auxiliary variable):

(x ∨ v1[0] ∨ v2[0]), (x ∨ ¬v1[0] ∨ ¬v2[0]),
(¬x ∨ v1[0] ∨ ¬v2[0]), (¬x ∨ ¬v1[0] ∨ v2[0]),
(o ∨ ¬x ∨ ¬v1[1] ∨ ¬v2[1]), (o ∨ ¬x ∨ v1[1] ∨ v2[1]),
(¬o ∨ v1[1] ∨ ¬v2[1]), (¬o ∨ ¬v1[1] ∨ v2[1]), (¬o ∨ x)

3. Finally, observe that resolution among clauses that relate the output and
input of a node using the output variable as the resolution variable, results
in a tautology. For example, recall the CNF representation of the ‘and’ node
above: Resolving on the output variable o of that node results in a tautol-
ogy. The same observation applies to other Boolean operators and equality
between bit-vectors.

We use these observations for analyzing the three possible cases for a node n
in Dφ: either it is retained in Dφ, replaced with a new variable, or eliminated.
Our goal, recall, is to show that despite the abstraction implied by these changes
to the DAG, the set of clauses that encode the new DAG Dφ still contains the
UNSAT core C of φ.

– Claim: for each node n ∈ Nφ for which the corresponding n̄ ∈ Nφ is retained
in the abstraction process, c(n) ∩ C = c(n̄) ∩ C.

Proof. Since n and n̄ encode the same operator and receive the same type of
input (e.g., if n and n̄ represent a bit-vector operator, then their respective
inputs are bit-vectors of the same width), then c(n) and c(n̄) are equivalent
up to renaming of variables. Such a renaming can occur if the abstraction
process replaced one of the inputs (or both) with a new variable. But this
means that none of these inputs are in C, hence those clauses in c(n̄) that
contain renamed literals, are not in C. Hence, c(n) ∩ C = c(n̄) ∩ C.

– Claim: for each node n ∈ Nφ that was replaced with a new variable in Nφ,
c(n) ∩ C = ∅.

Proof. This is trivial by the construction of the abstraction: if any of the
clauses in c(n) were in C, then this node would not be replaced with a new
variable.

– Claim: For each node n ∈ Nφ whose corresponding node n̄ ∈ Nφ was elimi-
nated (i.e., the paths of this node to the root were all ‘cut’ by the abstrac-
tion), c(n) ∩ C = ∅.

Proof. On each path from n to the root node, there exists one or more nodes
other than n that were replaced with free variables. For simplicity of the
proof, we will consider one such path and denote the closest node to n that
was replaced with a new variable by nc.

We will now prove the claim by induction on the distance (in terms of number
of DAG operators) from n to nc. In the base case n is a direct child of
nc. Falsely assume that there exists a clause cl ∈ c(n) such that cl ∈ C.
c(nc) contain o(n), the output variable of n, and cl also contains o(n) (see
observations 1 and 2 above). Hence, if cl ∈ C, then o(n) ∈ vars(C) which
contradicts the condition for abstracting nc with a new variable.
For the induction step falsely assume that there exists a clause cl ∈ c(n) such
that cl ∈ C. By the induction hypothesis, none of the clauses in the parent
node of n are in C. Hence, only clauses from c(n) can contain the output
variable of cl in C. This means that o(cl) can only be resolved-on among
c(n) clauses. By noting that that this kind of resolution can only result in
a tautology (see observation 3 above), this resolution step cannot be on the
path to the empty clause in the resolution proof. This contradicts, however,
the requirement that any variable in every clause that participates in a proof
of the empty clause must be resolved on in order to eliminate it.

Thus, the set of clauses annotating Dφ contains C and hence φ is unsatisfiable.
ut

In comparison with our previous CNF-based abstraction scheme [5], we note
that, for ITE-free formulas, that approach can generate more compact abstrac-
tions, as they do not introduce new variables. However, for real-world bench-
marks from both hardware and software verification, such as those discussed
in the following section, we found that elimination of ITEs leads to significant
space and time overheads. The approach of this paper allows us to extend the
abstraction-based approach to operate on arbitrary DAG-like formulas. More-
over, we have found that the Boolean structure in the original bit-vector formula
is not usually the primary source of difficulty; it is the bit-vector constraints that
are the problem.

3.3 Another Step of Abstraction

It is well-known that certain bit-vector arithmetic operators, such as integer
multiplication of two variables (of adequately large width), are extremely hard
for a procedure based on bit blasting. However, for many problems involving
these operators, it is unnecessary to reason about all of the operators’ properties
in order to decide the formula. Instead, using a set of rules (based on well-
known rewrite rules) allows us to perform fine-grained abstractions of functions,
which often suffices. Such (incomplete) abstractions can be used in the over-
approximation phase of our procedure, while maintaining the overall procedure
sound and complete (see Remark 1 in §3.1). This is a major advantage, because
these rules can be very powerful in simplifying the formula.

Therefore, uclid invokes a preprocessing step before calling Algorithm A. In
this step, it replaces a subset of “hard” operators by lambda expressions that

partially interpret those operators. The resulting formula is then bit blasted to
SAT.

For example, uclid replaces the multiplication operator ∗w of width w (for
w > 4, chosen according to the capacity of current SAT engines) by the follow-
ing lambda expression involving the freshly introduced uninterpreted function
symbol mulw:

λx.λy.ITE(x = 0 ∨ y = 0, 0, ITE(x = 1, y, ITE(y = 1, x, mulw(x, y))))

This expression can be seen as partially interpreting multiplication, as it models
precisely the behavior of this operator when one of the arguments is 0 or 1, but
is uninterpreted otherwise.

4 Experimental Results

The new procedure is now incorporated within the uclid verification system [24],
which is implemented in Moscow ML [25] (a dialect of Standard ML). Min-
iSat [22] was used as the SAT solver to solve over-approximations, while Boole-
force (written by Armin Biere) was used as a proof-generating SAT solver for
under-approximations. The initial value of si is set to min(4, wi) for benchmarks
not involving hard operators (like multiplication) while it is set to min(2, wi)
otherwise.

Table 1 shows experimental results obtained on a set of bit-vector formulas.
We compare the run-time of uclid against bit blasting to MiniSat, and the
STP [10] and Yices [11] decision procedures. (The latter two procedures jointly
won the bit-vector division of the recent SMT-COMP’06 competition, and we
compare against the versions that were entered in the competition.) All results
were obtained on a system with a 2.8 GHz Xeon processor and 2 GB RAM. The
benchmarks are drawn from a wide range of sources, arising from verification
and testing of both hardware and software:8

– Verification of word-level versions of an x86-like processor model [26] (Y86-
std, Y86-btnft);

– Detection of format-string vulnerabilities in C programs [27] (s-40-50);
– Hardware verification benchmarks obtained from Intel, slightly modified

(BBB-32, rfunit flat-64);
– Word-level combinational equivalence checking benchmarks obtained from a

CAD company9 (C1-P1, C1-P2, C3-OP80); and
– Directed random testing of programs [10] (egt-5212). This represents the

set of benchmarks used in SMT-COMP’06, which are easily solved within a
fraction of a second. (As the run-times on this benchmark was so small, we
state them to three decimal places, unlike the others.)

8 All benchmarks that we have permission to make publicly available are online at
http://www.cs.cmu.edu/~uclid/tacas07-examples.tgz.

9 Name withheld on their request.

The first three sets of benchmarks involve only (finite-precision) linear arith-
metic. The combinational equivalence checking benchmarks involve finite-pre-
cision multiplication with large widths (e.g., C1-P1 and C1-P2 involve 65-bit,
49-bit, and 30-bit multiplication), apart from bitwise operations including ex-
traction and concatenation. The last set includes linear arithmetic and bitwise
operations.

Bit-Blasting uclid

Formula Ans. Run-time (sec.) Run-time (sec.) STP Yices
Enc. SAT Total Enc. SAT Total (sec.) (sec.)

Y86-std UNSAT 17.91 TO TO 23.51 987.91 1011.42 2083.73 TO
Y86-btnft UNSAT 17.79 TO TO 26.15 1164.07 1190.22 err TO
s-40-50 SAT 6.00 33.46 39.46 106.32 10.45 116.77 12.96 65.51
BBB-32 SAT 37.09 29.98 67.07 19.91 1.74 21.65 38.45 183.30

rfunit flat-64 SAT 121.99 32.16 154.15 19.52 1.68 21.20 873.67 1312.00
C1-P1 SAT 2.68 45.19 47.87 2.61 0.58 3.19 err err
C1-P2 UNSAT 0.44 TO TO 2.24 2.12 4.36 TO TO

C3-OP80 SAT 14.96 TO TO 14.54 349.41 363.95 TO 3242.43
egt-5212 UNSAT 0.064 0.003 0.067 0.163 0.001 0.164 0.018 0.009

Table 1. Comparison of run-time of abstraction-based approach (uclid) with
bit-blasting, STP, Yices. The best run-time is highlighted in bold font. A “TO”
indicates a timeout of 3600 seconds was reached. An ”err” indicates that the solver
could not handle bit-vectors of width as wide as those in the benchmark or quit with
an exception. Bit-blasting used MiniSat. uclid used Booleforce for proof generation
and MiniSat on the abstraction. STP is based on MiniSat. “Ans” indicates whether the
formula was satisfiable (SAT) or not (UNSAT). “Enc” indicates time for translation to
SAT, and “SAT” indicates the time taken by the SAT solver (both calls).

An analysis of uclid’s performance on the benchmarks is given in Table 2. We
observe the following: 1) Only very few iterations of the abstraction-refinement
loop are required, just 1 in most cases; 2) The abstractions generated are small in
most cases; and 3) uclid yields a speed-up in all but one case when the number
of iterations is 1. In the 2 other cases, where some si reached the maximum wi,
it performs worse.

We look more closely at two benchmarks. uclid’s performance is orders of mag-
nitude better than the other solvers on the C1-P2 benchmark: this involves
multiplication as noted earlier, and the abstraction described in Section 3.3 was
particularly effective. However, on the benchmark s-40-50, it is 10 times worse
than STP, with most of the time spent in encoding. This problem is mainly
due to re-generation of the SAT instance in each step, which an incremental
implementation can fix.

The results indicate a complementarity amongst the solvers with respect to this
set of benchmarks: either bit-blasting (with rewrites as explained in §3.3) is
effective, or the problem is unsatisfiable with a small UNSAT core, or there is

a satisfying solution within a small range at the high and low ends of the bit-
vector’s value domain. In the latter two cases, our abstraction-based approach
is effective.

Formula Ans. maxi si maxi wi Num. Iter
max

|φ|
|φ|

Speedup

Y86-std UNSAT 4 32 1 0.18 2.06
Y86-btnft UNSAT 4 32 1 0.20 > 3.01
s-40-50 SAT 32 32 8 0.12 0.11
BBB-32 SAT 4 32 1 – 1.78

rfunit flat-64 SAT 4 64 1 – 7.27
C1-P1 SAT 2 65 1 – 15.00
C1-P2 UNSAT 2 14 1 1.00 > 825.69

C3-OP80 SAT 2 9 1 – 8.91
egt-5212 UNSAT 8 8 1 0.13 0.06

Table 2. Statistics on the abstraction-based approach (uclid). “maxi si” indi-
cates the maximum value of si generated in the entire run.“Num. Iter” indicates the
number of iterations of the abstraction-refinement loop where an iteration is counted
if at least one of the SAT solver calls is made. The second to last column compares the
size of the largest abstraction φ created as a fraction of the size of the original formula
φ, where sizes are measured as the number of nodes in the DAG representations of the
formulas. “Speedup” indicates the factor by which the abstraction-based approach is
faster than its nearest competitor, or slower than the best solver.

5 Conclusion

We have demonstrated the utility of an abstraction-based approach for deciding
the satisfiability of finite-precision bit-vector arithmetic. The speed-ups we have
obtained, especially on benchmarks involving non-linear arithmetic operations,
indicate the promise of the proposed approach. The algorithm is applicable in
many areas in formal verification (e.g., word-level bounded model checking) and
can be extended to handle floating-point arithmetic. Ongoing and future work
includes generalizing the form of over- and under-approximations beyond those
we have proposed herein, and making the encoding to SAT incremental.

References

1. Biere, A., Cimatti, A., Clarke, E., Yhu, Y.: Symbolic model checking without
BDDs. In: TACAS. (1999) 193–207

2. Clarke, E., Kroening, D.: Hardware verification using ANSI-C programs as a ref-
erence. In: Proceedings of ASP-DAC 2003, IEEE Computer Society Press (2003)
308–311

3. Xie, Y., Aiken, A.: Scalable error detection using Boolean satisfiability. In: Proc.
32nd ACM Symposium on Principles of Programming Languages (POPL). (2005)
351–363

4. Arons, T., Elster, E., Fix, L., Mador-Haim, S., Mishaeli, M., Shalev, J., Singerman,
E., Tiemeyer, A., Vardi, M.Y., Zuck, L.D.: Formal verification of backward com-
patibility of microcode. In: Proc. Computer-Aided Verification (CAV’05). LNCS
2404 (2005) 185–198

5. Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O.: Abstraction-based satis-
fiability solving of Presburger arithmetic. In: Proc. CAV. Volume 3114 of LNCS.
(2004) 308–320

6. McMillan, K., Amla, N.: Automatic abstraction without counterexamples. In:
Proceedings of TACAS 03. Volume 2619., Springer LNCS (2003) 2–17

7. Cook, B., Kroening, D., Sharygina, N.: Cogent: Accurate theorem proving for
program verification. In: Proceedings of CAV 2005, Springer (2005) 296–300

8. Berezin, S., Ganesh, V., Dill, D.: A decision procedure for fixed-width bit-vectors.
Technical report, Computer Science Department, Stanford University (2005)

9. Wedler, M., Stoffel, D., Kunz, W.: Normalization at the arithmetic bit level. In:
Proc. DAC, ACM Press (2005) 457–462

10. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: Auto-
matically generating inputs of death. In: 13th ACM Conference on Computer and
Communications Security (CCS ’06), ACM (2006) 322–335

11. Dutertre, B., de Moura, L.: The Yices SMT solver. Available at
http://yices.csl.sri.com/tool-paper.pdf (2006)

12. Cyrluk, D., Möller, M.O., Rueß, H.: An efficient decision procedure for the theory
of fixed-sized bit-vectors. In: Computer-Aided Verification (CAV ’97). (1997) 60–71

13. Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for bit-vector arith-
metic. In: Proceedings of DAC’98, ACM Press (1998) 522–527

14. Babić, D., Musuvathi, M.: Modular Arithmetic Decision Procedure. Technical
report, Microsoft Research, Redmond (2005)

15. Brinkmann, R., Drechsler, R.: RTL-datapath verification using integer linear pro-
gramming. In: Proceedings of VLSI Design. (2002) 741–746

16. Parthasarathy, G., Iyer, M.K., Cheng, K.T., Wang, L.C.: An efficient finite-domain
constraint solver for circuits. In: Design Automation Conference (DAC). (2004)
212–217

17. Huang, C.Y., Cheng, K.T.: Assertion checking by combined word-level ATPG and
modular arithmetic constraint-solving techniques. In: Proc. DAC. (2000) 118–123

18. Gupta, A., Ganai, M., Yang, Z., Ashar, P.: Iterative abstraction using SAT-based
BMC with proof analysis. In: ICCAD. (2003)

19. Lahiri, S., Mehra, K.: Interpolant based decision procedure for quantifier-free
Presburger arithmetic. Technical Report 2005-121, Microsoft Research (2005)

20. Tseitin, G.: On the complexity of proofs in poropositional logics. In Siekmann, J.,
Wrightson, G., eds.: Automation of Reasoning: Classical Papers in Computational
Logic 1967–1970. Volume 2., Springer-Verlag (1983) Originally published 1970.

21. zChaff. http://www.ee.princeton.edu/~chaff/zchaff.php.
22. MiniSat. http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/.
23. Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable

Boolean formulas. In: Proceedings of SAT 03. (2003)
24. UCLID verification system. http://www.cs.cmu.edu/~uclid.
25. Moscow ML. http://www.dina.dk/~sestoft/mosml.html.
26. Bryant, R.E.: Term-level verification of a pipelined CISC microprocessor. Tech-

nical Report CMU-CS-05-195, Computer Science Department, Carnegie Mellon
University (2005)

27. Wisconsin Safety Analyzer Project. http://www.cs.wisc.edu/wisa.

