
An Application of Web-Service Interfaces ∗

Dirk Beyer
Simon Fraser University

Canada

Arindam Chakrabarti
UC Berkeley

USA

Thomas A. Henzinger
EPFL Lausanne

Switzerland

Sanjit A. Seshia
UC Berkeley

USA

Abstract

We present a case study to illustrate our formalism for
the specification and verification of the method-invocation
behavior of web-service applications constructed from
asynchronously interacting multi-threaded distributed com-
ponents. Our model is expressive enough to allow the rep-
resentation of recursion and dynamic thread creation, and
yet permits the algorithmic analysis of the following two
questions: (1) Does a given service satisfy a safety specifi-
cation? (2) Can a given service be substituted by a another
service in an arbitrary context? Our case study is based on
the Amazon.com E-Commerce Services (ECS) platform.

1 Introduction

In this era of global-scale networked computing, dis-
parate software components developed, maintained, used,
and managed by different organizations, communicate with
each other and collaborate over the internet to manage
global supply chains, e-commerce platforms, financial sys-
tems, etc. In the past, a number of networked comput-
ing standards like COM, DCOM, RPC, RMI, CORBA, or
.NET Remoting have been implemented by the major play-
ers in the software-engineering industry. However, the
platform-independent, language-neutral, XML-based web-
service framework seems poised to become the standard go-
ing forward.

Previously, the vast majority of business software ap-
plications used to be either developed completely in-house
in the end-user organization, put together inside the end-
user organization with standard components bought off-the-
shelf, or developed by software firms contracted by the end-
user organization for the job, and then maintained and run

∗This research was supported in part by the NSF grant CCR-0225610
and by the Swiss National Science Foundation.

completely inside the end-user organization. The advent
of web-service standards has completely changed the sce-
nario. These standards allow the development of cross-
platform, cross-organization, global-scale computing appli-
cations. However, for this very reason, they introduce new
software specification, verification, and testing challenges.
It is no longer possible for the end-user organization or the
contractually hired software-developer organization to ver-
ify or test the entire application. No one organization has
the entire source code for, or administrative control over
the entirety of, an application such as an e-commerce en-
gine built on the widely-used networked computing infras-
tructure known as the Amazon.com E-Commerce Services
(ECS) platform.

Standards such as the Business Process Execution Lan-
guage for Web Services (BPEL4WS) and the Web Service
Choreography Interface (WSCI) have been proposed to al-
low distributed system components to be described behav-
iorally. However, these standards were not developed focus-
ing on software-verification applications, and have hence
turned out to be ill-suited for such purposes, primarily be-
cause they do not have a clearly defined formal semantics.

In formal modeling, much recent work has focused on
the behavioral representation and verification of web ser-
vices. Finite-state models for asynchronously communicat-
ing components [6, 7, 12, 14] allow checking safety prop-
erties for web services. Several communication models
have been analyzed [18] and conditions proposed allowing
the analysis of components communicating asynchronously
through unbounded queues [4, 13, 16]. Hierarchical state
machines [3] have been proposed to achieve succinctness
compared to flat finite-state models. Temporal logics for
specifying and verifying temporal properties of web ser-
vices [21, 22], as well as logics to model dynamic contracts
between services [9] have been proposed. Several other in-
teresting models for e-business conversations have been put
forward, e.g. based on the π-calculus [19, 20], communicat-

ing sequential processes [8], abstract state machines [11],
and Petri nets [15, 23]. Other work has looked at handling
data [2, 17] and modeling data-driven web services [10].

Our web-service interface formalism [5] focuses ex-
clusively on the web-method invocation behavior of web-
service applications and provides the constructs of recur-
sion, sequential composition, and two kinds of parallel com-
position that are useful in this context. We find this explicit
representation of concurrency and recursion useful for rep-
resenting web services. The formalism is restricted in such
a manner that the questions of reachability and simulation
checking are decidable.

This allows us to address the following two questions of
interest. First, does a given service satisfy a safety specifi-
cation given as a formula of linear temporal logic? This is
the specification-checking problem. Second, can a service
P be replaced with an alternative service P ′ in an arbitrary
context ? For instance, if P represents the FedEx web ser-
vice, and P ′ represents the UPS web service, then if such
a substitutivity relation should hold, it would imply that an
organization such as Amazon.com currently partnering with
FedEx could simply add UPS as a new partner without hav-
ing to make any changes to the rest of its networked comput-
ing infrastructure. We call this the substitutivity problem.

In this paper we illustrate the usefulness of this ap-
proach for the verification of distributed asynchronous
multi-threaded component-based systems. We choose a
case study based on the Amazon.com E-Commerce Ser-
vices (ECS) platform. The specification language presented
in [5] is enriched to allow greater expressivity.

The rest of the paper is organized as follows. In Sec-
tion 2 we present the preliminaries of our formalism with
examples illustrating the definitions. In Section 3 we revisit
the questions of checking safety specifications and substitu-
tivity. The main section, Section 4, presents the case study
based on the ECS distributed computing platform.

2 Preliminaries

In this section we review the web-service interface for-
malism presented in [5]. Let M and O be finite sets of
web methods and outcomes, respectively. Outcomes are as-
sociated with calls to web methods, and encode parame-
ters passed to the web method, return values from the web
method, and other behavioral differences between various
calls to the web method; for instance, whether the invo-
cation was synchronous or asynchronous, or in the latter
case, if it will lead to a callback. For instance, the ac-
tion 〈ShipItems, OK〉 represents the invocation of the web
method ShipItems that eventually completes successfully,
whereas the action 〈ShipItems, FAIL〉 represents the in-
vocation of the same web method that eventually returns a
failure code. Let A ⊆ M × O be the set of actions. We

present the following formalism to formally model the web
method invocation behavior exhibited by web services.

2.1 Syntax

The set of terms over a set of actions A is defined by the
following grammar for elements term ∈ terms (a ∈ A and
A ⊆ A, |A| ≥ 2):

term ::= a | uA | �A

A protocol automaton F is a tuple (Q,⊥, δ), where Q
is a finite set of control locations, ⊥ ∈ Q is the return lo-
cation, and δ : (Q \ {⊥}) → (terms × Q) is the switch
function of the protocol automaton, which assigns to each
location different from ⊥ a term and a successor location.
A web-service protocol interface (web-service interface for
short) P is a tuple P = (D,F), where D : A → 2Q is
a partial function that assigns to an action a set of control
locations, and F is a protocol automaton.

2.2 Semantics

The execution of an action a begins at one of the loca-
tions from D(a). A switch δ(q) = (term, q′) means that,
if the automaton is currently in location q, it recursively in-
vokes term, and remembers the successor location q′ as the
return location, where control returns when the recursive
invocation of term terminates. If the automaton reaches the
location ⊥, it returns control to the caller; a return for the
very first invocation of action a leads to termination of the
execution. The term a = 〈m, o〉 represents a call to web
method m with expected outcome o. The term uA repre-
sents the invocation of actions a ∈ A in parallel; the execu-
tion of the term is not complete until all parallel invocations
are complete and return. The term �A represents the in-
vocation of actions a ∈ A in parallel; the execution of the
term is not complete until at least one of the parallel invoca-
tions is complete and returns. We require that starting from
any location of the automaton as the current location, the
execution of the interface can be completed.

At each stage of the execution, the set of actions invoked
in parallel is generated as output. A fresh symbol ret is
generated as output whenever any invoked action completes
execution and returns control (or overall execution com-
pletes). The result of the execution is the sequence of the
generated output sets. Thus, action invocations and returns
are visible [1] in the generated execution trace. Intuitively,
this is equivalent to giving our analysis algorithm the ability
to monitor the local stack of the system, in order to be able
to answer questions such as web-service substitutivity de-
fined as simulation in terms of the web method invocation
behavior.

Formally, a web-service interface P denotes an underly-
ing transition relation defined over an infinite set of trees.
Given a finite set L of symbols, a tree t over L is a partial
function t : N∗ → L, where N∗ denotes the set of finite
words over the set N of natural numbers, and the domain
dom(t) = {p ∈ N∗ | ∃(p, l) ∈ t} is prefix-closed. Each
element from dom(t) represents a node of the tree t, and
each node p is named with the symbol t(p). The root is
represented by the empty word ρ. The set of child nodes
of node p in tree t is denoted by ch(t, p) = {p′ | ∃b ∈
N : p′ = p · b ∧ p′ ∈ dom(t)}, where · is the con-
catenation operator. The set of leaf nodes of a tree t is
leaf (t) = {p ∈ dom(t) | ch(t, p) = ∅}. The set of all
trees over a finite set L is denoted by T (L).

Given a protocol interface P = (D,F), the underly-
ing transition relation of P is a labeled transition relation
→P ⊆ T (Q�) × 2A∪{ret} × T (Q�), where the states are
trees over the tree symbols Q� = Q × {�, ◦}, where Q is
the set of locations of protocol automaton F , and the transi-
tions between states are labeled with sets of elements from
A∪{ret}. We write t A→ t′ for (t, A, t′) ∈ →P . In the rules
below, if action c is supported by P , then qc is an element
of D(c), otherwise qc is ⊥. The relation →P is defined as
follows:

• Call: t
{a}→ t′ if there exists a node p such that p ∈

leaf (t), t(p) = q◦, and δ(q) = (a, q′) is a switch of
F , and t′ = (t \ {(p, q◦)}) ∪ {(p, q′◦), (p · 0, qa◦)}.

• Fork: t
A→ t′ if there exists a node p such that

p ∈ leaf (t), t(p) = q◦, and δ(q) = (uA, q′) is a
switch of F , and t′ = (t \ {(p, q◦)}) ∪ {(p, q′◦), (p ·
0, qa0◦), (p · 1, qa1◦), . . . , (p · k, qak

◦)}, where A =
{a0, a1, . . . , ak}.

• Fork-Choice: t A→ t′ if there exists a node p such that
p ∈ leaf (t), t(p) = q◦, and δ(q) = (�A, q′) is a
switch of F , and t′ = (t \ {(p, q◦)}) ∪ {(p, q′�), (p ·
0, qa0◦), (p · 1, qa1◦), . . . , (p · k, qak

◦)}, where A =
{a0, a1, . . . , ak}.

• Return: t
{ret}→ t′ if there exists a node p · b, where b ∈

N, such that p · b ∈ leaf (t), t(p · b) = ⊥◦, t(p) = q◦,
and t′ = t \ {(p · b,⊥◦)}.

• Return & Remove Sibling Tree: t
{ret}→ t′ if there exists

a node p · b, where b ∈ N, such that p · b ∈ leaf (t),
t(p · b) = ⊥◦, t(p) = q�, and t′ = (t \ {(p · p′, q′?) |
p′ ∈ N∗ ∧ q′? ∈ Q�}) ∪ {(p, q◦)}.

A run of a transition relation is an alternating sequence
of trees and sets of actions t0, A1, t1, A2, t2, . . . with ∀i ∈
{1, . . . n} : ti−1

Ai→ ti. A trace is the projection of a run
to its action sets, e.g., for the run t0, A1, t1, A2, t2, . . ., the

corresponding trace is A1, A2, . . .; for a location q, a q-run
is a run t0, A1, t1, . . .with t0 = {(ρ, q◦)}, i.e., a run starting
from location q; and a q-trace is the trace corresponding to
a q-run.

Example 1 Let us consider a simple calendar man-
agement web-service interface P = (D,F) that
supports the actions 〈OrganizeMeeting, OK〉 and
〈AddEventToCalendari, OK〉, and requires the ac-
tions 〈Busy, OK〉 and 〈SendConfirmationEmail, OK〉.
The function D together with the protocol automaton F are
given as follows, where an arrow a 7→ q represents a pair of
function D, a triple q : (term, q′) represents a switch of F :

〈OrganizeMeeting, OK〉 7→
q0 : (〈SyncCalendars, OK〉, q1)
q1 : (〈Confirm, OK〉,⊥)

〈SyncCalendars, OK〉 7→
q2 : (u{〈AddEventToCalendar1, OK〉,

〈AddEventToCalendar2, OK〉, . . . ,
〈AddEventToCalendark, OK〉},⊥)

〈Confirm, OK〉 7→
q3 : (〈SendConfirmationEmail, OK〉,⊥)

〈Confirm, OK〉 7→ ⊥
〈AddEventToCalendari, OK〉 7→ ⊥
〈AddEventToCalendari, OK〉 7→
q4 : (〈Busy, OK〉,⊥)

This web-service interface has the following seman-
tics. The execution begins with the invocation of action
〈OrganizeMeeting, OK〉, which leads to a number of par-
allel invocations of 〈AddEventToCalendari, OK〉 (one for
each desired participant in the meeting being scheduled),
sequentially followed by 〈SendConfirmationEmail, OK〉,
which can only be invoked after all parallel invocations
of 〈AddEventToCalendari, OK〉 have completed their
execution. In each invocation of the later action, the system
may find out that the participant concerned is busy (leading
to the invocation of 〈Busy, OK〉) or not. After all parallel
invocations have finished, the system nondeterministically
chooses to send a confirmation email to all participants not-
ing that the meeting has been scheduled, or not: the actual
implementation could decide to send the confirmation only
if none of the 〈AddEventToCalendari, OK〉 actions led to
the invocation of 〈Busy, OK〉, i.e., all desired participants
were indeed found to be free.

Now let us consider the following, slightly modified
version P ′ of the calendar management service:

〈OrganizeMeeting, OK〉 7→
q0 : (〈SyncCalendars, OK〉, q1)
q1 : (〈Confirm, OK〉,⊥)

〈SyncCalendars, OK〉 7→
q2 : (�{〈AddEventToCalendar1, OK〉,

〈AddEventToCalendar2, OK〉, . . . ,
〈AddEventToCalendark, OK〉},⊥)

〈Confirm, OK〉 7→
q3 : (〈SendConfirmationEmail, OK〉,⊥)

〈Confirm, OK〉 7→ ⊥
〈AddEventToCalendari, OK〉 7→ ⊥
〈AddEventToCalendari, OK〉 7→
q4 : (〈Busy, OK〉,⊥)

This modified web service does not wait for the
execution to complete on all parallel invocations of
〈AddEventToCalendari, OK〉. As soon as the first partic-
ipant’s status (busy or not) can be obtained, the system is
free to move forward and decide whether to schedule the
meeting or not.

3 Specifications and Substitutivity

3.1 Specifications

We now present an extended version of the specification
language introduced in [5]. There, we allowed specifica-
tions of the form a 6 ϕ̂, where a ∈ A and ϕ̂ is a temporal-
logic formula of the form (¬C) U B (“not C until B”),
with C,B ⊆ A. In this paper, we use a richer language and
illustrate its use on the examples.

A specification ψ for a web-service interface P is a tem-
poral safety property of the form ψ = a 6 ϕ, where ϕ is a
temporal-logic formula of the following form:

ϕ ::= φ ∧ (φ U ϕ) | φ
φ ::= T | F | b | ¬b | φ ∧ φ | φ ∨ φ

where a, b ∈ A.
The temporal-logic formula φ U ϕ (read “φ until ϕ”)

represents a temporal property of traces. Intuitively, a trace
satisfies a formula φ U ϕ if it satisfies ϕ eventually, and
satisfies φ at each step until then.

Formally, a web-service interface P satisfies a specifi-
cation ψ = a 6 ϕ (denoted P |= ψ) if there exists no
q-trace σ = S1 · S2 · . . . · Sk of P such that σ |=t ϕ with
q ∈ D(a). The satisfaction relation |=t between traces and
temporal-logic formulae is defined as follows. For the trace
σ = S1 · S2 · . . . · Sk, we have σ |=t a if a ∈ S1 and
σ |=t ¬a otherwise; and σ |=t φ1 ∧ φ2 if σ |=t φ1 and
σ |=t φ2; and σ |=t φ1 ∨ φ2 if σ |=t φ1 or σ |=t φ2;
and σ |=t T for all σ; and σ |=t F for no σ. For a trace
σ = S1 · S2 · . . . · Sk, we have σ |=t φ1 U (φ2 ∧ (φ3 U ϕ))
if either (1)

∧
S1 ∧ (¬

∨
(A\S1)) ⇒ φ1 and σ′ |=t φ2 and

σ′ |=t φ3 U ϕ where σ′ = S2 · S3 · . . . · Sk, or (2) σ |=t φ2

and σ |=t φ3 U ϕ.

We are able to check specifications in this enriched lan-
guage using an algorithm that is similar to the existing algo-
rithm [5], by using the modified set of production rules as
presented in Figures 1 and 2. The modified rules have been
augmented to consider the extended temporal logic, the in-
terleaving semantics of executions by parallel subtrees of
the overall system configuration at each stage, and the non-
completing semantics of the operator�, as appropriate. For
ease of presentation, we use the following abbreviations in
Figures 1 and 2. Let N2j+1,2k+1 with j ≤ k be the set of
naturals {2j+1, 2j+1, . . . , 2k, 2k+1}. Given a set of nat-
urals N2j+1,2k+2 \ {2i | i ∈ N} where N is some subset of
N such that 2k+2 /∈ N , then ϕ0

2j+1,2k+2 is an abbreviation
for the formula φ2j+1 U (φ2j+2∧ (φ2j+3 U (φ2j+4∧ . . . U
(φ2k ∧ (φ2k+1 U φ2k+1))))) where φ2i = T for every
i ∈ N . Given a set of naturals N2j+1,2k+1 \ {2i | i ∈ N}
where N is some subset of N, then ϕ2j+1,2k+1 is an ab-
breviation for the formula φ2j+1 U (φ2j+2 ∧ (φ2j+3 U
(φ2j+4∧ . . . U (φ2k∧�φ2k+1)))) where φ2i = T for every
i ∈ N . Given a set of naturals N2j+1,2k+1 \ {2i | i ∈ N}
where N is some subset of N, then ϕ′2j+1,2k+1 is an ab-
breviation for the formula φ2j+1 U (φ2j+2 ∧ (φ2j+3 U
(φ2j+4 ∧ . . . U (φ2k ∧ (φ2k+1 U T))))) where φ2i = T
for every i ∈ N .

Example 2 Let us consider the calendar management
web-service interface P as defined in Example 1, and
the specification ψ = 〈OrganizeMeeting, OK〉 6 T U
(〈SendConfirmationEmail, OK〉∧ (T U 〈Busy, OK〉)). In-
tuitively, the specification ψ represents the question “Is
there an execution trace resulting from the invocation of ac-
tion 〈OrganizeMeeting, OK〉 on which at least one desired
participant is found to be busy after the email confirmation
for the meeting had already been sent out?” As expected,
we find that P |= ψ, and P ′ 6|= ψ.

3.2 Substitutivity

Substitutivity between web-service interfaces is defined
in terms of simulation of execution traces: if for every web
method a that is supported by P , the underlying transition
system representing the invocation of a on P ′ can be sim-
ulated by that representing the invocation of a on P , then
P can be safely substituted with P ′ in any arbitrary context
(denoted P ′ 4 P) [5].

4 Case Study

We present the following case study on using our formal-
ism to formally model a web-based sales system P that is
built using the Amazon.com E-Commerce Services (ECS)
platform.

q |= φ1 U (φ2 ∧ (φ3 U (φ4 ∧ . . . U φ2k)))

(δ(q) = (c, q′) ∧ (c ∧ ¬
∨

(A \ {c})) ⇒
∧

1≤i≤k φ2i) ∨
(δ(q) = (◦A, q′) ∧ (

∧
A ∧ ¬

∨
(A \A)) ⇒

∧
1≤i≤k φ2i)

◦ ∈ {u,�}
(Reached U0)

qc |= (φ2j0+1 U (φ2j0+2 ∧ . . .∧ U (φ2k)))
q |= φ1 U (φ2 ∧ (φ3 U (φ4 ∧ . . . U φ2k)))

δ(q) = (c, q′),
c ∧ ¬

∨
(A \ {c}) ⇒ (

∧
0≤i≤j0

φ2i) ∧ φ2j0+1,

qc ∈ D(c)
(Reached U+

1)

qa1 |= ϕ′2j11+1,2j12+1

qa2 |= ϕ′2j21+1,2j22+1

. . .
qal

|= ϕ0
2jl1+1,2jl2+2

. . .
qak

|= ϕ′2jk1+1,2jk2+1

q |= ϕ0
1,2j1+2

δ(q) = (◦A, q′), A = {a1, a2, . . . , al, . . . , ak},∧
A ∧ ¬

∨
(A \A) ⇒ (

∧
0≤i≤j0

φ2i) ∧ φ2j0+1,

qai ∈ D(ai), 1 ≤ i ≤ k, ◦ ∈ {u,�}, j0 ≤ ji1 ≤ ji2 ≤ j1
for all 1 ≤ i ≤ k, such that N2ji1+1,2ji2+1 ∩ N2jm1+1,2jm2+1

contains no even natural for all 1 ≤ i ≤ k, 1 ≤ m ≤ k, i 6= m, and⋃
1≤i≤k N2ji1+1,2ji2+1 = N2j0+1,2j1+1, and jl2 = j1

(Reached U+
2)

qa |= (φ2j0+1 U (φ2j0+2 ∧ . . .∧ U (φ2j3 ∧�φ2j3+1)))
q′ |= φ2j3+1 U . . . U φ2k

q |= φ1 U (φ2 ∧ (φ3 U (φ4 ∧ . . . U φ2k)))
a ∧ ¬

∨
(A \ a) ⇒ (

∧
0≤i≤j0

φ2i) ∧ φ2j0+1

δ(q) = (a, q′), qa ∈ D(a)
(Call U)

qa1 |= ϕ2j11+1,2j12+1

qa2 |= ϕ2j21+1,2j22+1

. . .
qak

|= ϕ2jk1+1,2jk2+1

q′ |= ϕ0
2j1+1,2j2+2

q |= ϕ0
1,2j2+2

(
∧
A ∧ ¬

∨
(A \A)) ⇒ (

∧
0≤i≤j0

φ2i) ∧ φ2j0+1,

δ(q) = (uA, q′), qai ∈ D(ai) for 1 ≤ i ≤ k,
A = {a1, a2, . . . , ak}, j0 ≤ ji1 ≤ ji2 ≤ j1 for all 1 ≤ i ≤ k,
such that N2ji1+1,2ji2+1 ∩ N2jm1+1,2jm2+1 contains no
even natural for all 1 ≤ i ≤ k, 1 ≤ m ≤ k, i 6= m, and⋃

1≤i≤k N2ji1+1,2ji2+1 = N2j0+1,2j1+1

(Fork U)

qa1 |= ϕ′2j11+1,2j12+1

qa2 |= ϕ′2j21+1,2j22+1

. . .
qal

|= ϕ2jl1+1,2jl2+1

. . .
qak

|= ϕ′2jk1+1,2jk2+1

q′ |= ϕ0
2j1+1,2j2+2

q |= ϕ0
1,2j2+2

(
∧
A ∧ ¬

∨
(A \A)) ⇒ (

∧
0≤i≤j0

φ2i) ∧ φ2j0+1,

δ(q) = (�A, q′), qai
∈ D(ai), 1 ≤ i ≤ k,

A = {a1, a2, . . . , al, . . . , ak}, j0 ≤ ji1 ≤ ji2 ≤ j1 for all 1 ≤ i ≤ k,
such that N2ji1+1,2ji2+1 ∩ N2jm1+1,2jm2+1 contains no
even natural for all 1 ≤ i ≤ k, 1 ≤ m ≤ k, i 6= m, and⋃

1≤i≤k N2ji1+1,2ji2+1 = N2j0+1,2j1+1

(Fork-Choice U)

Figure 1. Main set of proof rules for specification checking

q |= T
(T)

q |= a

δ(q) = (a, q′) ∨ (δ(q) = ◦A ∧ a ∈ A),
◦ ∈ {u,�} (a)

q |= ¬a
δ(q) 6= (a, q′) ∧ ¬(δ(q) = ◦A ∧ a ∈ A),
◦ ∈ {u,�} (¬a)

q |= φ1 q |= φ2 U ϕ

q |= φ1 ∧ (φ2 U ϕ)
(∧1)

q |= φ1 q |= φ2

q |= φ1 ∧ φ2
(∧2)

q |= φ1

q |= φ1 ∨ φ2
(∨)

⊥ |= φ1 U (φ2 ∧ . . . U (φ2j ∧�φ2j+1))
φ2i =

∧
a∈Ai

(¬a) where Ai ⊆ A, 1 ≤ i ≤ j,
φ2j+1 =

∧
a∈A2j+1

(¬a) where A2j+1 ⊆ A (Return �)

qa |= φ2j0+1 U (φ2j0+2 ∧ . . . U (φ2j1 ∧�φ2j1+1))
q′ |= φ2j1+1 U (φ2j1+2 ∧ . . . U (φ2j2 ∧�φ2j2+1))

q |= φ1 U (φ2 ∧ . . . U (φ2j2 ∧�φ2j2+1))
(a ∧ ¬

∨
(A \ a)) ⇒ (

∧
0≤i≤j0

φ2i) ∧ φ2j0+1,

δ(q) = (a, q′), qa ∈ D(a)
(Call �)

qa1 |= ϕ2j11+1,2j12+1

qa2 |= ϕ2j21+1,2j22+1

. . .
qak

|= ϕ2jk1+1,2jk2+1

q′ |= ϕ2j1+1,2j2+1

q |= ϕ1,2j2+1

(
∧
A ∧ ¬

∨
(A \A)) ⇒ (

∧
0≤i≤j0

φ2i) ∧ φ2j0+1, δ(q) = (uA, q′),
qai ∈ D(ai), 1 ≤ i ≤ k,A = {ai | 1 ≤ i ≤ k}, j0 ≤ ji1 ≤ ji2 ≤ j1
for all 1 ≤ i ≤ k, such that N2ji1+1,2ji2+1 ∩ N2jm1+1,2jm2+1

contains no even natural for all 1 ≤ i ≤ k, 1 ≤ m ≤ k, i 6= m, and⋃
1≤i≤k N2ji1+1,2ji2+1 = N2j0+1,2j1+1

(Fork �)

qa1 |= ϕ′2j11+1,2j12+1

qa2 |= ϕ′2j21+1,2j22+1

. . .
qal

|= ϕ2jl1+1,2jl2+1

. . .
qak

|= ϕ′2jk1+1,2jk2+1

q′ |= ϕ2j1+1,2j2+1

q |= ϕ1,2j2+1

(
∧
A ∧ ¬

∨
(A \A)) ⇒ (

∧
0≤i≤j0

φ2i) ∧ φ2j0+1, δ(q) = (�A, q′),
qai

∈ D(ai), 1 ≤ i ≤ k,A = {a1, a2, . . . , al, . . . , ak}, j0 ≤ ji1 ≤ ji2 ≤ j1
for all 1 ≤ i ≤ k, such that N2ji1+1,2ji2+1 ∩ N2jm1+1,2jm2+1

contains no even natural for all 1 ≤ i ≤ k, 1 ≤ m ≤ k, i 6= m, and⋃
1≤i≤k N2ji1+1,2ji2+1 = N2j0+1,2j1+1

(Fork-Choice �)

Figure 2. Auxiliary set of proof rules for specification checking

The system has the set of web methods MLocal =
{BeginTransaction,ContinueTransaction,
FindItems,BrowseNewItems,ProcessPayment,
ShipItems}. It uses the web meth-
ods provided by the Amazon.com ECS plat-
form represented by the set MAmazon =
{ItemSearch,CartCreate,CartAdd,CartModify,
CheckOut}. The set of outcomes O = {s} ∪ ASIN ∪
CARTID ∪ CATID is used to characterize web method
invocations, where s denotes successful completion of
a web method invocation, ASIN is the set of Ama-
zon Standard Identification Numbers used to represent
items for sale, CARTID is the set of Cart Identifiers
used by the Amazon.com ECS platform to distinguish
between the virtual shopping carts assigned to various
online shopping customers, and CATID is the set of
Category Identifiers used by the ECS platform to repre-
sent various categories of items, such as Books, Music,
Movies, Garments, etc. The set of actions A is given by
A = (MLocal ∪ MAmazon ∪ F) × O, where F is a set of
fresh symbols.

The web-based sales system P is now defined formally
as a web-service interface P = (D,F), whereD : A → 2Q

maps an action to a set of locations, which we denote below
by writing an action in front of every location that the action
is mapped to, and the protocol automaton F = (Q,⊥, δ) is
represented by giving the switch function δ of the automa-
ton as a sequence of triples q : (term, q′).

P = {
〈BeginTransaction, s〉 7→
q0 : (〈CartCreate, c〉, q1)
q1 : (〈ContinueTransaction, c〉,⊥)

〈ContinueTransaction, c〉 7→
q2 : (〈a, s〉�〈b, s〉�〈c, s〉�〈d, s〉,⊥)

〈a, s〉 7→
q3 : (〈BrowseNewItems, c〉,⊥)

〈b, s〉 7→
q4 : (〈CartModify, c〉,⊥)

〈c, s〉 7→
q5 : (〈CheckOut, c〉,⊥)

〈d, s〉 7→
q6 : (〈ContinueTransaction, c〉,⊥)

〈BrowseNewItems, c〉 7→
q7 : (〈FindItems, s〉,⊥)

〈BrowseNewItems, c〉 7→
q8 : (〈FindItems, s〉, q9)
q9 : (〈CartAdd, c〉,⊥)

〈FindItems, s〉 7→
q10 : (〈ItemSearch, c1〉�〈ItemSearch, c2〉,⊥)

}

The execution begins with the invocation of the web method
BeginTransaction, which is implemented by the ser-

vice using the web method CartCreate provided by the
Amazon ECS, which creates a new shopping cart and re-
turns the cart identifier c to the service P . The service P
then allows the user (the customer, i.e., the person using the
service P to buy items online) to search for new items and
optionally add them to the shopping cart, modify the con-
tents of the shopping cart, and check out. The former three
actions can be done in parallel: the user can open multi-
ple browser windows, through which multiple search, cart-
add, and cart-modify transactions can be run in parallel, all
of which would be dealing with the multi-threaded shop-
ping cart object provided by the ECS platform. When the
web method CheckOut is invoked, Amazon.com atomi-
cally inspects the contents of the user’s cart, charges the
customer for the total price, and ships the items, complet-
ing the sale. Thus, note that in particular, the user pays for
exactly those items that get shipped.

Now, let us consider a modification of the system above
to account for a change in the business model of our web-
based shop. Previously, the shop depended upon Ama-
zon.com to take care of billing the customer and ship-
ping products. Now, to establish a closer relationship with
the customer, our web-based shop decides to implement
billing and shipping themselves in their own local check-out
method LocalCheckOut and helpers ComputePrice
and ShipItems, and continue using the Amazon.com
ECS platform for only its product search services and shop-
ping cart implementation.

The modified system is P ′ = (D′,F ′) with the
following additional actions 〈LocalCheckOut, c〉,
〈ComputePrice, OK〉, and 〈ShipItems, OK〉, and
the modified partial function D′ is obtained from D by
adding the mappings indicated below, and the modified
protocol automaton F ′ obtained from F by replacing
the invocation of 〈CheckOut, c〉 in F with that of
〈LocalCheckOut, c〉, and adding to F the locations and
transitions represented as follows:

〈LocalCheckOut, c〉 7→
q11 : (〈ComputePrice, OK〉, q12)
q12 : (〈ShipItems, OK〉,⊥)

〈ComputePrice, OK〉 7→ ⊥
〈ShipItems, OK〉 7→ ⊥

This simple modification has indeed introduced a severe
error in our application. To appreciate this, let us consider
the specification ψ = 〈BeginTransaction, s〉 6
(T U (〈ComputePrice, OK〉 ∧ (T U (〈CartAdd, c〉 ∨
〈CartModify, c〉) ∧ (T U 〈ShipItems, OK〉))).
Intuitively, this specification represents the ques-
tion “Is an execution starting with the invocation of
〈BeginTransaction, s〉 possible on which a cart-add
or cart-modify transaction is successfully completed after
price computation has been successfully invoked on the cart

but before the items in the cart have been shipped?” Note
that P ′ 6|= ψ. Thus, it is possible for an execution trace to
occur (involving a race condition), in which the customer
is able to make one or more cart-add or cart-modify
transaction(s) after the price has been computed, but before
the items in the shopping cart have been shipped. On
such an execution trace, the customer could pay for items
that never get shipped, or vice versa; both cases involving
incorrect behavior.

We note that the problem can be resolved by getting rid
of some of the parallelism afforded by the original design.
We modify the service above accordingly, and obtain the
following web-service interface P ′′ = (D′′,F ′′), where the
modified partial function D′′ is obtained from D′ by adding
the mappings indicated below, and the modified protocol
automaton F ′′ obtained from F ′ by replacing the locations
and transitions for 〈a, s〉, 〈b, s〉, 〈c, s〉, and 〈d, s〉 in F ′ with
the following:

〈a, s〉 7→
q13 : (〈BrowseNewItems, c〉, q14)
q14 : (〈ContinueTransaction, c〉,⊥)

〈a, s〉 7→
q15 : (〈CartModify, c〉, q14)

〈a, s〉 7→
q16 : (〈LocalCheckOut, c〉,⊥)

〈b, s〉 7→ ⊥
〈c, s〉 7→ ⊥
〈d, s〉 7→ ⊥

We note that P ′′ |= ψ. However, how would we know
that the modified service P ′′ can be safely substituted in
place of the service P ′? To this end we can simply check
substitutivity by asking the question if P ′′ 4 P ′. The an-
swer turns out to be Yes, and we safely conclude that the
final service is the desired result.

References

[1] R. Alur and P. Madhusudan. Visibly Pushdown Languages.
In Proc. STOC, pages 202–211. ACM Press, 2004.

[2] D. Berardi, D. Calvanese, G. D. Giacomo, R. Hull, M. Lenz-
erini, and M. Mecella. Modeling Data & Processes for Ser-
vice Specifications in Colombo. In Proc. EMOI-INTEROP.
CEUR-WS.org, 2005.

[3] A. Betin-Can and T. Bultan. Verifiable Web Services with
Hierarchical Interfaces. In Proc. ICWS, pages 85–94. IEEE
Computer Society Press, 2005.

[4] A. Betin-Can, T. Bultan, and X. Fu. Design for Verification
for Asynchronously Communicating Web Services. In Proc.
WWW, pages 750–759. ACM Press, 2005.

[5] D. Beyer, A. Chakrabarti, and T. A. Henzinger. Web Ser-
vice Interfaces. In Proc. WWW, pages 148–159. ACM Press,
2005.

[6] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation Specifica-
tion: A New Approach to Design and Analysis of E-Service
Composition. In Proc. WWW, pages 403–410. ACM Press,
2003.

[7] T. Bultan, J. Su, and X. Fu. Analyzing Conversations of Web
Services. IEEE Internet Computing, 10(1):18–25, 2006.

[8] M. J. Butler, C. A. R. Hoare, and C. Ferreira. A Trace Se-
mantics for Long-Running Transactions. In 25 Years Com-
municating Sequential Processes, pages 133–150. Springer,
2004.

[9] H. Davulcu, M. Kifer, and I. V. Ramakrishnan. CTR-S: A
Logic for Specifying Contracts in Semantic Web Services.
In Proc. WWW, pages 144–153. ACM Press, 2004.

[10] A. Deutsch, L. Sui, and V. Vianu. Specification and Verifi-
cation of Data-Driven Web Services. In Proc. PODS, pages
71–82. ACM Press, 2004.

[11] R. Farahbod, U. Glässer, and M. Vajihollahi. A Formal Se-
mantics for the Business Process Execution Language for
Web Services. In Proc. WSMDEIS, pages 122–133. IN-
STICC Press, 2005.

[12] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Compati-
bility Verification for Web Service Choreography. In Proc.
ICWS, pages 738–741. IEEE Computer Society Press, 2004.

[13] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL
Web Services. In Proc. WWW, pages 621–630. ACM Press,
2004.

[14] X. Fu, T. Bultan, and J. Su. Conversation Protocols: A For-
malism for Specification and Verification of Reactive Elec-
tronic Services. Theor. Comput. Sci., 328(1-2):19–37, 2004.

[15] R. Hamadi and B. Benatallah. A Petri Net-Based Model for
Web Service Composition. In Proc. ADC, pages 191–200.
Australian Computer Society, 2003.

[16] R. Kazhamiakin and M. Pistore. Analysis of Realizabil-
ity Conditions for Web Service Choreographies. In Proc.
FORTE, volume 4229 of LNCS, pages 61–76. Springer,
2006.

[17] R. Kazhamiakin and M. Pistore. Static Verification of Con-
trol and Data in Web Service Compositions. In Proc. ICWS,
pages 83–90. IEEE Computer Society Press, 2006.

[18] R. Kazhamiakin, M. Pistore, and L. Santuari. Analysis of
Communication Models in Web Service Compositions. In
Proc. WWW, pages 267–276. ACM Press, 2006.

[19] C. Laneve and G. Zavattaro. Foundations of Web Trans-
actions. In Proc. FoSSaCS, volume 3441 of LNCS, pages
282–298. Springer, 2005.

[20] M. Mazzara and I. Lanese. Towards a Unifying Theory for
Web Services Composition. In Proc. WS-FM, volume 4184
of LNCS, pages 257–272. Springer, 2006.

[21] M. Solanki, A. Cau, and H. Zedan. Augmenting Seman-
tic Web Service Descriptions with Compositional Specifica-
tion. In Proc. WWW, pages 544–552. ACM Press, 2004.

[22] M. Solanki, A. Cau, and H. Zedan. ASDL: A Wide Spec-
trum Language for Designing Web Services. In Proc. WWW,
pages 687–696. ACM Press, 2006.

[23] J. Zhang, J.-Y. Chung, C. K. Chang, and S. Kim. WS-Net:
A Petri Net-Based Specification Model for Web Services. In
Proc. ICWS, pages 420–427. IEEE Computer Society Press,
2004.

