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Chapter 1

Introduction

� Why did we do this?

� What is component-based design?

� What question were we trying to answer?

� Outline of the report
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Chapter 2

Viterbi Algorithm

Introduction

2.1 Our specification

2.2 Metrics & Analysis Benchmarks
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Chapter 3

Implementions

We chose to implement the Viterbi decoder in four different component design styles,
for comparison. The different implementations are software running on a general-
purpose processor, software running on a DSP, software running on a customizable
processor, and an ASIC soft core implementation using standard cells. These styles
covers the broad range of choices faced by today’s system designer, and so it is hoped
that this study reflects real-world practices.

For the general-purpose processor, the ARM8 core from ARM was studied. This
processor is known for its good performance and low power qualties, and so was chosen
as a viable competitor against the DSP and ASIC solutions.

The TMS320C54x processor from Texas Instruments was chosen for the DSP im-
plementation. As will be explained, this DSP is geared specially towards the Viterbi
algorithm, and so this would be a prime choice in a real-world design.

Also studied here is the new Xtensa configurable microprocessor core by Tensilica.
This processor allows some customization of the instruction set, and thus allows some
of the benefits of the design flexibility available in hardware with the ease-of-design of
a software-based platform.

Finally, an ASIC solution was studied to try to quanify the performance and power
benefits available when designing in a hardware style.

Note that there are other interesting design styles available, such as an FPGA-based
or other reconfigurable logic system. We chose to focus on only the above four styles
due to limited resources.

3.1 Software on ARM

The ARM family of microprocessors are 32-bit processors, featuring a scalar integer
unit, with no floating point hardware. The architecture is a fairly standard 5-state RISC
pipeline. Most ALU operations (including a barrel shifter, capable of arbitrary shifts of
data) require one cycle to complete; some instructions can be issued in one cycle, but
delay their results for several cycles.
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3.1.1 Implementation Details

Using Lookup Tables

The branch metric computation specified in the project description can be very ineffi-
cient if implemented using ALU operations. Two multiplications and an addition are
required for each branch computation. Multiplications are especially costly, as the re-
sult from these operations is only available 3 cycles after the instruction is issued; these
pipeline slots must be filled with instructions which are independent of the multiplica-
tion results.

In contrast, implementing the branch metric computation as a lookup table results
in a significant performance gain. Memory accesses require only a 1 cycle delay slot,
as opposed to the potential 3 for multiplication. Thus not only are the number of
instructions decreased, but we then have fewer constraints on instruction scheduling.

The only drawback to using a lookup table is the potentially large size of the ta-
ble. Since the I and Q components of the metric act orthogonally, we only require a
64-element array to for each functionally-distinct metric computation. There are two
such tables (one for (x-1)(x-1) and one for (x+1)(x+1)), so 128 words (512 bytes) are
required.

Additionally, the Viterbi code computation (essentially a parity computation) is
efficiently done with a lookup table as well; this takes 64 words, so a total of 768 bytes
is needed for lookup tables.

Caching Strategy

Early on, we recognized that poor cache management would result in a large perfor-
mance degradation; minimization of memory utilization would be essential to achiev-
ing good data rates. To this end, we chose to implement the traceback buffer as a
packed array of bits; each traceback only contains one bit of information, the LSB of
the previous state, and the upper bits can be derived from the current state. Thus 32
bits of traceback can be packed into a single word in memory. Extraction of the packed
bits is made efficient through the barrel shifter, and so the performance lost due to
unpacking is minimized.

Quality of Results

The bit error rate (BER) achieved using 16-bit fixed point computation and a 128-step
traceback buffer was 1.50e-4 for the reference data set. Using the SNR degradation
estimation provided with the reference data gives a resulting 0.196 dB degradation.
This is exactly the same results obtained from the reference implementation, so we
assume the performance of the ARM implementation is acceptable.

We attempted to adjust the algorithm to obtain better performance; an easy way
to do this is to reduce the traceback depth. Reducing the traceback to 64-levels in-
creased the BER to 7.00e-4 with a corresponding 0.725 dB SNR degradation. This is
unacceptable, given a 0.05 dB SNR budget.

We did another experiment where we used a single-bit encoding scheme; using
single bits may give an easy way to perform many path metric computations in parallel,
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by using the full 32-bit width of the ALU. However, the quality degradation is severe;
the corresponding BER is 1.36e-2, with a 1.963 dB SNR degradation.

The final implementation was thus chosen to use 16-bit resolution and a 128-level
traceback, in order to meet the quality of results requirements.

Development and Simulation

An instruction-level simulator for the ARM8 core was available from Prof. Rabaey’s
group. This simulator estimates power consumed for a given program based on profil-
ing of the code.

Power models were also available for the SA-110 microcontroller, but the param-
eters of the project dictated that we use a standalone core, so the ARM8 was chosen
here. The models also include power for an 8k unified I+D cache.

Unfortunately, power characterization was only available for the core running at
125 MHz and 3.3 V. As we will see in the next section, we require higher performance
to match the desired bitrate for the project. We will subsequently show how to scale
these results to meet the performance requirements.

3.1.2 Observations

Raw Results

For decoding 4096 bits, the simulator indicated that 9.67 Mcycles of computation
would be required, with 53.14 mW of power used. This gives a datarate of 52947
bits/s. Again, the power is characterized for 125 MHz operation and 3.3 V. These
figures include the power used for the cache.

Result Scaling

We note that the ARM architecture is capable of higher speeds than that given by the
simulator; 275 MHz SA-110 devices are available in current commercial products. As
well, the SA-110 family from Intel operates at 2.0 V. Thus we assume that these are
achievable goals for our design. If we assume that power varies with the square of the
voltage and linearly with the frequency, then our results scale to give a 116484 bits/s
datarate and 42.94 mW power consumption.

Design Cost (Area)

The ARM8 core proper occupies an area of 3.75 mm x 1.65 mm, while the 8k cache
needs 3.2 mm x 0.4 mm, both in a 0.25 um process. Thus the total area for the design
is 7:47mm2

Design Effort

An estimated 4 person-days of design work was required for this design, including a
small amount of time for familiarization with the ARM architecture for design opti-
mization.
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The software is written completely in ANSI C code, so this design should be very
portable. Some of the architecture-dependent design optimizations may need to be
rethought based on the new architecture, however.

3.1.3 Summary

Clock Speed 275 MHz
Execution Performance 116.5 kb/s
Area 7.47 mmˆ2 (0.25 um)
Power Dissipation 42.94 mW

5.68 mW/mmˆ2

3.2 Software on TI 320C54

The TI TMS320C54x DSP is a new, low power line of DSPs unveiled by TI in June
1998. These chips use 16 bit fixed point words, and can run at as low as .45 mW /
MIPS for chips built in 0.25 micron technology.

For our implementation, we choose to use the VC5402, which has the following
features:

� Operates at 100 MIPS with a core voltage of 1.8V

� I/O pins operate at 3.3V

� 16K word x 16 bits of dual-access RAM

� 4K word x 16 bits of ROM

� Internal DMA

� Is created in 0.18 micron technology (Results are later scaled up to a .25 micron
implementation for comparison purposes)

Hardware capabilities of the entire C54x series include:

� Three 16-bit data buses and one 16-bit program memory bus

� 40 bit ACC with 40 bit barrel shifter and two independant accumulators

� A single cycle non-pipelined MAC

� Single-instruction repeat and block-repeat operations for program code

� Block-memory-move instructions for better program and data management

� Arithmetic instructions with parallel store and parallel load

� Up to 168K single access RAM

� Up to 32K dual access ram

� Up to 8M word external memory access

� Six channel DMA controller
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3.2.1 Implementation Details

Texas instruments provides a reference document describing how to implement a Viterbi
Decoder on a C54 DSP. This document can be downloaded at:

http://www-s.ti.com/sc/psheets/spra071/spra071.pdf

The C54x is highly optimized to perform the Viterbi Decomposition due to the
following features of its ALU:

� A single cycle compare, select, and store unit (CSSU) is used to compare branch
metrics, record the larger value, and store the appropriate decision bit, all in one
cycle

� Dual accumulators allow for dual add/subtract operations to occur in one clock
cycle

� Address pointer registers can be incremented/decremented in a circular buffer as
part of these instructions

� The above 2 instructions allow a butterfly to occur in 5 cycles - 1 load local
distance, 2 dual add/subtract, 2 CSSU

An assembly program was created using code snippets from the TI Viterbi Decoder
Appplication Report which showed how to best take advantage of these features. The
code can be found in the Appendices.

The only deviation from the specifications listed above is that a length 128 trace-
back was used, with only the final 64 bits being recorded. A multiple of 16 was chosen
to simplify the code for traceback, and does not degrade the performance of the algo-
rithm (in fact, it enhances it). Since 16 bit arithmetic was used upon 6 bit input words,
there was no quantization loss in the algorithm (beyond input quantization noise), so it
easily met the SNR and BER requirements.

The input I and Q data was assumed to have been put into a partiuclar memory
location by one of the on-chip DMA channels, and the output data words are assumed
to have been moved to their final destination by another on-chip DMA channel. Al-
ternatively, since the Viterbi decoding algorithm does not require all of the processing
power of the chip, the input data might have been placed in its memory location after
the TI chip was used to run some filtering or other DSP algorithm upon the datapoints.

3.2.2 Observations

The code mentioned above was simulated on a cycle-accurate TI simulator, which in-
cluded a memory map specific to this processor. To decode 64 bits, the decoding algo-
rithm took, on average, 13780 cycles to run (13714 cycles if the path metrics did not
need to be decremented, 13914 cycles if the path metrics did need to be updated). At
this rate, to decode 100 Kbits/second, which can be handled if the chip runs at 22 MHz.
Alternatively, the chip could handle a maximum of 464.7 Kbits/second at 100 MHz.
Since we are scaling the technology up from 0.18 to 0.25 technology, it is unlikely that
the 1.8V core could be clocked at 100 MHz, but 22 MHz should be easily attainable.
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As seen below, the code needed used only about a fourth of the 4Kx16 ROM, and
the data storage necessary was a little over 1/16 of the available 16K x 16 dual access
RAM.

Code Size: 1032 (16 bit) Program Words
Data Storage: 1280 (16 bit) Data Words
Cycles Required (100 Kbps) 13780
Maximum Speed (100 MIPS) 464.7

The results closely follow the estimates from TI. From the TI Appplication Report,
we have the following predictions for required operations/frame: (FS = frame size, FR
= frame rate)

Metric update: Cycles/frame = (#States/2 butterflies butterfly calculation + TRN
store + local dist calculation.) # bits = (2 K-2 5 + 2 K-5 + 1 + n 2 n-1 ) FS Traceback:
Cycles/frame = (loop overhead and data storage + loop 16) # bits/16 = (9 + 12 16)
FS/16 = 201 FS/16 Data reversal: Cycles/frame = 43 FS/16 Total MIPS = Frame rate
(metric update + traceback + data reversal) cycles/frame = FR [(2 K-2 5 + 2 K-5 + 1
+ n 2 n-1 ) FS + (201/16) FS + (43/16) FS] = FR FS (2 K-2 5 + 2 K-5 + 1 + n 2
n-1 + (201 + 43)/16) = FR FS (2 K-2 5 + 2 K-5 + n 2 n-1 + 16.25)

So, for a frame size of 100K bits and frame rate of 1 Hz, the estimate was18.425
MIPS at 100 Kbits/sec, or 582 Kbits/sec maximum at 100 MIPS. The difference be-
tween the estimate and the actual implementation is due to necessary overhead of set-
ting up pointers, creating loops, decrementing path metrics, and doing a traceback
twice for all bits of data (since only the last 64 bits of a length 128 traceback are
stored).

Power

Using another Application Report from TI, Calculation of TMS320LC54x Power Dis-
sipation, I examined every instruction used in my program. Since TI estimates current
usage based upon half nop and half MAC instructions, I concluded that my program
averaged 1.08 times more current usage than their standard figure of .45 mA/MIPS
(which uses half MACs, half NOPs) for .25 micron technology. Their chips are made
using static CMOS designs, made to run at frequencies approaching 0 Hz, so for a
clock rate of 22 MHz the power should scale linearly. Thus, we calculate that to run
the Viterbi decoder at 100 Kbits/sec using a C5402 DSP requires 13.78 mW.

Voltage Current Power
DSP Core 1.8 V 10.69 mA 19.25 mW

This figure does not include any estimate of power to drive I/O pins since our
comparison is upon the core only.

Physical Chip Size

TI does not publish their die sizes, and we were unable to find a suitable figure any-
where in the literature. This chip (and other ones with larger memories) is implemented
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on a 144 pin ball grid array (BGA) measuring 12 mm per side. The area in this pack-
age usable for a die measures 3.2 mm on a side, so the maximum size of the die and
memory is10:24mm2.

Cost

Cost of Chip (50K quantities) $5 - $75 ea.
Emulator Development Kit $2,995
Code Composer Development Environment $3156.45
Simulator $1578.22
C Compiler/Assembler/Linker $2367.33
Debugger $3156.45

Development Tools

TI boasts a fairly sophisticated, integrated set of development tools. The Code Com-
poser Development Environment claims to seamlessly integrate the compiler/assembler/linker,
debugger, simulator and emulator. It includes a signal probe, profiler, multiprocessor
debugging, data visualization, interactive compiling, and a development environment
similar to Microsoft Visual C++. Run-time libraries are available to speed code devel-
opment and assure code optimality, and TI claims efficiency of compiled code to be
close to hand-assembled code.

This project did not use the C compiler at all, the entire program was created in
assembly language. We found that many features of the debugger seemed to be better
suited to debugging C code rather than assembly. The tools overall were well integrated
and helpful, although there is still plenty of work to be done that would make them
better.

Development Time

This project could be completed in approximately 3 engineer days, from start to finish,
using the latest tools. This is based upon the somewhat sophisticated (comparitively)
development tools available for the TI line of DSPs, the availability of run-time li-
braries, the availability of the Viterbi algorithm application report (with included code
snippets), and the availability of configurable emulator boards with JTAG pins. It also
assumes that the engineer is familiar with the TI tools and the TI C54x assembly lan-
guage. Since I was familiar with neither, this project took me somewhat longer to
finish.

3.2.3 Summary

This chip is an excellent choice for a low data rate implementation of the Viterbi De-
coder. The chip is fast, low power, and has specialized instructions that greatly acceler-
ate the speed of decoding. An application report from TI will speed development, and
the with less than 25% of the chip operation time and only a fraction of its memory be-
ing utilized for a 100 Kbit/sec decoder, there is plenty of processing power remaining
to implement other blocks in the receiver chain.
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3.3 Software on Tensilica Configurable Processor

The Tensilica Xtensa configurable processor is a RISC core which allows designers
to customize certain aspects of the processor to tune it towards a particular applica-
tion. A potential designer uses the Tensilica Processor Generator tool to configure a
microprocessor. The designer has the ability to do such things as configure caches,
configure memories, set up interrupt mechanisms, add datapath units such as a multi-
plier or MAC, and add Tensilica Instruction Extension (TIE) instructions. Based on the
configurations, a compiler and instruction set simulator are generated. The compiler
and instruction set simulator are used to determine the performance of the applications
on the described architecture. Based on the feedback from the simulator, the designer
can update the architecture and restructure the C code. The process continues until the
designer is satisfied with the results.

FIXME show flow picture?

3.3.1 Implementation without TIE (CP0)

Implementation details
Observations
Summary & Results

3.3.2 Implementation with TIE (CP3)

Implementation details
Observations
Summary & Results

3.4 ASIC Soft Core Hardware Implementation

Introduction
This section describes the ASIC implementation of the Viterbi decoder. This im-

plementation is based on the Mentor Viterbi soft core. Some of the features include:

� Flexible coding parameters: code rate, constraint length, traceback depth, code
generating functions, soft decision word length

� Two orders of magnitude flexibility in speed and area: full parallel for high
speed, and parameterized resource sharing for area efficiency

� Robust algorithmic implementation: self-normalizing traceback and saturation
arithmetic in ACS computation

� RTL model optimized for high quality synthesis results

� Additional features (which can be disabled): channel bit error rate monitoring,
Viterbi encoder, and synchronization monitor

The items provided as part of the soft core were:
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� Bit-true cycle-based C and VHDL behavioral models

� Synthesizable and simulatable VHDL models with simulation scripts for Mentor
VHDL simulator (which did not work for Synopsys VHDL simulator however)

� Self verifying test bench

� Synopsys synthesis scripts

� User’s guide

3.4.1 Implementation details

Functionality verification and bit error rate (BER) simulations

As part of the Viterbi decoder soft core deliverables, three functionally equivalent
models are provided: a synthesizable VHDL RTL model, a behavioral bit-true VHDL
model, and a bit-true C behavioral model. The equivalency of the models for the par-
ticular decoder parameters of interest was verified through C and VHDL (modelsim)
simulations, while the simulation times for the three models differ significantly (the
behavioral VHDL simulation was about 10 times slower than behavioral C simula-
tion, and the VHDL RTL simulation was about 1,000 times slower). The C behavioral
model was used for BER simulations. It is a true cycle based implementation offer-
ing the highest simulation speed. The decoder is implemented using integer arithmetic
with identical precision and rounding algorithms as the RTL model. The figure below
shows the BER against SNR (signal to noise) curves for both ”ideal” (D = 100 and
floating point or swidth = 11 with modulo arithmetic in the ACS unit) and Mentor core
(D = 48 and swidth = 9 with normalization) cases. The SNR degradation is about 0.15
dB.

FIXME FIGURE HERE
The synthesized net list of the Viterbi decoder is simulated and the gate level sim-

ulation results are compared with those form behavioral simulation to verify the func-
tionality of the synthesized hardware (i.e. no synthesis related errors were introduced
and timing constraints are met under target condition). After place and route, a transis-
tor level net list with parasitic capacitance can be extracted and final verification could
be done using Epic tools.

Technology

The technology used to implement this core was a0:25�m six-metal layer process with
a good standard cell library from ST Microelectronics.

Place and Route

The place and route of the Viterbi SRAM macro cells and standard cells was done in
Cadence. Silicon Ensemble was used for routing. Parasitics for timing simulation were
extracted from the final placed and routed nets in Silicon Ensemble.
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There were significant problems in attempting to route the chip without routing
violations. The smallest number of routing violations observed was 6, despite trying a
large chip area of 12mm2.

The routing congestion appears to be worst at the 16 by 64 bit SRAM outputs -
an SRAM cell design with pins spread over a wider length might solve the problem.
Previous experience has found problems in Silicon Ensemble when routing pins not
spaced at least 2 um apart, as wires are restricted to being 1 um apart, and vias to
higher metal layers are quite large. Thus, the design analysis proceeded despite the
unrouted nets, under the assumption that these nets would be routable given a different
SRAM layout.

Different areas were tried, along with different placements (with width x height in
um):

� chip area 2.5 mm2, 1575x1560: about 4700 violations

� chip area 3.2 mm2, 1803x1790: 57 violations

� chip area 3.6 mm2, 1850x1950: 57 violations, 64 violations with external pin
locations changed

� chip area 4.0 mm2, 1850x2150: 64 violations, 77 violations with one 64 bit
SRAM macro cell above the other two (significant routing congestion between
all three) - in both placements the 64 bit SRAMs were vertical

� chip area 4.5 mm2, 1850x2450: 78 violations initially, reduced to 15 violations,
then 9 violations with better placement

� Final placement, chip area 4.0 mm2, 1250x3200: 9 violations, 64 bit SRAMs
were placed sideways next to each other

3.4.2 Observations

SRAM Simulations

Assumptions:

� Clock Speed is 66 Mhz

� 1000 iterations of activity (read, write, both)

� Voltage 2.5 V

1 ns set up time
2 ns hold time
1.8 ns to read address after rising clock edge

1 ns set up time
2 ns hold time
5 ns to read address after rising clock edge
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Operations Average Average Average
Current Power Energy per
(�A) (mW) Operation (pJ)

All Read 664 1.66 24.9
All Write 563 1.41 21.1
Random R/W 612 1.53 23.0

Table 3.1: Smaller ACS SRAM (16 by 8 bits) Power Simulation, Without Parasitics.

Operations Average Average Average
Current Power Energy per
(�A) (mW) Operation (pJ)

All Read 2170 5.43 81.4
All Write 1890 4.73 71.0
Random R/W 2090 5.22 78.3

Table 3.2: Larger ACS SRAM (16 by 64 bits) Power Simulation, Without Parasitics.

1 ns set up time
2 ns hold time
1.9 ns to read address after rising clock edge

1 ns set up time
8 ns hold time
5 ns to read address after rising clock edge

Power and Timing Analysis

The capacitance per net was reported from the router (Silicon Ensemble) using the
report simcap command. From this extraction, a Design Compiler capacitance
annotation script was generated. Switching activity was measured from a 16000 cycle
(1000 symbol) gate level VHDL simulation, and this was given to Design Compiler for
annotation as well.

The timing analysis was divided into two parts, the analysis of paths which do not
include an SRAM and the paths which do include an SRAM. Among all paths which do
not include an SRAM, the longest was found to have a delay of 8.65 ns before parasitic
annotation, and 16.7 ns after annotation. Thus the maximum operating frequency is 60
MHz. As expected, this critical path was through an ACS unit.

The longest path which passes through an SRAM was found to have a delay of
11.3 ns after parasitic extraction. Adding in an SRAM delay of 1.8 ns and a setup time
of 1.0 ns, the path delay becomes 13.1 ns for this case. Thus the SRAM is not in the
critical path.

Power numbers for gate designs (i.e. not including the SRAM) were found using
thereport_power command. Table 3.5 shows these results. The power used for the
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Operations Average Average Average
Current Power Energy per
(�A) (mW) Operation (pJ)

All Read 950 2.37 35.6
All Write 773 1.93 29.0
Random R/W 851 2.13 31.9

Table 3.3: Smaller ACS SRAM (16 by 8 bits) Power Simulation, Wit Parasitics.

Operations Average Average Average
Current Power Energy per
(�A) (mW) Operation (pJ)

All Read 2480 6.21 93.2
All Write 2680 6.69 100.0
Random R/W 2570 6.44 96.5

Table 3.4: Larger ACS SRAM (16 by 64 bits) Power Simulation, With Parasitics.

SRAM is shown in Table 3.6. Operation is assumed at 2.5 V and 60 MHz.

Power Without With With Capacitances
Annotation Switching and S.A. (mW)
(mW) Activity

(mW)
Cell 28 20 20
Net 15 6 9
Total 43 26 29
Leakage 750 nW 810 nW 810 nW

Table 3.5: Summary of Power Compiler Results (Decoder Gates only)

Some of the blocks in this design would not be implemented in an actual Viterbi de-
coder implementation, for example the BER monitor, scrambler, etc. Thereport_power
command was used on each sub-block of the design (without any back annotation), and
it was found that 11% of the gate power was used by these blocks. Thus the final power
figure is (29 mW x 89%) + 7.9 mW + 18 mW = 50.6 mW.

EPIC Powermill Simulation

FIXME results questionable?
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Memory Element Energy Per Measured Total
Module Count Operation Switching (mW)

(pJ) Activity
9x8 ACS Mem.
(Small SRAM) 16 31.9 0.5 7.9
64x16 Traceback Mem.
(Large SRAM) 3 96.5 0.94 18

Table 3.6: Summary of Memory Module Power

Scaling

In order to take advantage of the fact that the implemented Viterbi decoder soft core
can achieve much higher sample rate with 2.5 V supply voltage than required, voltage
scaling is applied to trade in the ”extra” performance for low power consumption. Since
the standard cell library is characterized only under 2.5 V, all the scaling is based on the
two figures below, which are critical path delay vs. supply voltage and energy-delay-
product (EDP) vs. supply voltage. The figures are based on results from HSPICE
simulations of a 16 bit ripple adder design (with parasitic capacitance) using the same
0.25 um technology. The voltage range under consideration is from 0.8 V to 2.5 V.

FIXME FIGURE HERE
Different supply voltage could be chosen depending on figure of merit of the de-

sign, for example, chose 2.5 V for highest performance, 0.8 V for lowest energy/power
consumption, and 1.25 V for lowest energy-delay-product. The table below lists the
scaled performance for the implemented Viterbi decoder, where clock rates are chosen
to be approximately 1 / (critical path delay).

Optimized Supply Clock Symbol Energy-Delay Power
for Voltage Rate Rate Product (mW)

(MHz) (Msps) (fJs)
Performance 2.5 60 3.75 3.60 50.6
Power 0.8 7.46 0.47 2.96 0.64
EDP 0.8 7.46 0.47 2.96 0.64

Table 3.7: Performance Results for Variable Clock Frequency

3.4.3 Summary & Results

Performance 3.75 Msps
Power 50.6 mW (2.5 V, 60 MHz)
Area 4.0 mmˆ2
Design Time 30 designer days
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Chapter 4

Pulling it all Together

4.1 Introduction

4.1.1 Methods for comparison, scaling issues, approximations used,
etc.

4.2 Summary of Results & Conclusions
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Chapter 5

References

FIXME
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Chapter 6

Appendices

Code, etc.
FIXME
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