Design Space Exploration of Stream-based Dataflow Architectures

Dr. ir. Bart Kienhuis,

Delft University of Technology

In cooperation with Philips Research Laboratories

E-mail: kienhuis@cas.et.tudelft.nl

29 January, 1999

System Level Design

New High-performance DSP Architectures

- Operations: 1 Gops 10 Gops
- Bandwidth: 1000 Mbytes 10.000 Mbytes per second

Focus is on Stream-based Dataflow Architectures

(2)

Outline

- Architecture Template & Video Applications
- The Y-chart Approach
- The Y-chart Environment for Stream-based Dataflow Architectures
 - Retargetable Simulator
 - Mapping
- Design Space Exploration
- Example
- Conclusions

(3)

Architecture Template

(4)

Video Algorithms

Specified as Kahn Process Networks (Lee&Parks'95)

- Dynamic Dataflow
- Deterministic execution trace (Kahn'74)

Assumptions

- Coarse-grained Functions
- Sample Based

Design Space Exploration of Stream-based Dataflow Architectures / 29 January, 1999

(5)

Problem Statement

The Designer's Problem

- Many design choices
- Need to evaluate different design alternatives

General and structured design approaches are lacking

(6)

The Y-chart Approach

Design Space Exploration of Stream-based Dataflow Architectures / 29 January, 1999

(7)

The Y-chart Approach (cont'd) (Abstraction Pyramid) High Low back-of-the-envelope explore estimation models Cost of Modeling/Evaluation **Opportunities** abstract executable Abstraction models explore cycle-accurate models synthesizable VHDL models Low High **Alternative realizations** Design Space

8/30

The Y-chart Approach (cont'd)

(Stack of Y-Charts)

(9)

The Y-chart Approach (cont'd)

Y-Chart Environment

(For Stream-based Dataflow Architectures)

(11)

Retargetable Architecture Simulator

Required:

- Retargetable simulator
- Cycle accurate
- Fast Simulator
- Functional Correct

Programming

Simulator	Lang.	Accuracy	Sim. Speed	1 Video
(Architecture)			Instr./sec	Frame
SPIM (MIPS 3000)	С	instruction	200.000	10 min.
tmsim (TriMedia)	С	clock-cycle	40.000	54 min.
DLX (DLX)	VHDL	RTĹ	500	1.2 day.
ORAS	C++	cycle	10.000	3.6 hours

Design Space Exploration of Stream-based Dataflow Architectures / 29 January, 1999

Object Oriented Retargetable Architecture Simulator

(13)

Step1: Architecture Description

(14)

Step2: Execution Model

```
FIFO::read
     pam_P (data);
     aSample = queue[readfifo];
     readfifo = (++readfifo)%cap;
     pam_delay (1);
     pam_V (room);
FIFO::write( aSample )
                                        Write
     pam_P (room);
     queue[writefifo] = aSample;
     writefifo = (++writefifo)%cap;
     pam_delay (1);
     pam_V (data);
}
```

Performance Modeling PAMELA

- Mutual Exclusivity
- Condition Synchronization

- Processes
- Synchronization Primitives
- Time

(15)

Step3: Metric Collectors

Element Type	Performance Metric		
Comm. Structure	Utilization		
Controller	Utilization		
Buffer	Filling distribution		
Routers	Response Time Controller		
Functional Unit	Utilization, Number of Context Switches		
Functional Element	Utilization, Pipeline Stalls		
	Throughput, Number of Operations		
Architecture	Number of Operations, Total execution time		

Design Space Exploration of Stream-based Dataflow Architectures / 29 January, 1999

(16)

(17)

Mapping (cont'd)

Mapping Approach:

- Explicit description of both Architecture and Applications
- Description Formalisms and Data Types should correspond

(18)

Stream-based Functions

Source

Basis:

- Describe a network as a Kahn Process Network (Kahn '74)
- Structure the nodes based on the AST model of Backus (Backus '78)
 - Controller
 - State
 - Set of Functions

Filter B

Sink

Filter A

Example of an SBF Object

Binding Function

$$\mu(s) = \begin{cases} f_a, & \text{if } s = 0\\ f_a, & \text{if } s = 1\\ f_b, & \text{if } s = 2\\ f_c, & \text{if } s = 3, \end{cases}$$

Transition Function

$$\omega(s) = s + 1 \pmod{3}.$$

Current State	Function	Buffer0	Buffer1	Buffer2
so	f_a	R	R	W
s_1	f_a	R	R	W
<i>s</i> 2	f_b	R		W
s3	f_c			W

(20)

Mapping of an SBF Object

Mapping (cont'd)

The Mapping approach results in an Application/Architecture interface

- No need to rewrite applications
- Capture the correct timing behavior of applications on arbitrary architecture instances
 - Pipeline and Throughput

Example:

Function { Type: LowPass(throughput=1,latency=15); }

(22)

Design Space Exploration

Inverse Transformation

The Acquisition of Insight

Design Space Exploration of Stream-based Dataflow Architectures / 29 January, 1999

23/30

(23)

Design Space Exploration (cont'd)

Design Space Exploration of Stream-based Dataflow Architectures / 29 January, 1999

Design Space Exploration (cont'd)

(25)

Experiment

• Service Time: { 1 ... 20 } Cycles per Request

(26)

Results Sarrica Cirra $-\Sigma$ pocket ~°° 4.13 0 3.77 A-01 *4.*0 3.42 3.5 3.06 3 S 2.70 3.0 3 0 2.35 2.5 2.5 parallelism Parallelisin 1.99 5.⁰ 2.0 1.63 1.5 7-8 1.27 0.92 7.₀ 0.8 0^{.5} 0.56 2 0.20 S. Contraction of the second 3 Service time *`6*0 Ś 0 Parallelism

Result of simulating 25 different Architecture Instances

Design Space Exploration of Stream-based Dataflow Architectures / 29 January, 1999

(27)

Results (cont'd)

(28)

Conclusions

Presented a Method and Tools for exploring Stream-based Dataflow Architectures.

Better Engineered Architectures in less TimeMethod

- Y-chart approach to quantify design choices
- Y-chart environment for Stream-based Dataflow Architectures
- Systematic exploration of the design space

Tools

- Object Oriented Retargetable Architecture Simulator (ORAS)
- The SBF Model
- Design Space Exploration environment based on Nelsis

(29)

Future Work

- Generalize presented methods and tools for heterogeneous system design at different levels of abstraction (Lieverse et al.)
- Compiling Matlab applications into descriptions in terms of the SBF Model (Rypkema et al.)

For more information look at:

⇒http://cas.et.tudelft.nl/research/hse.html

(30)