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17.1 Introduction

Viterbi Decoders (VDs) are today widely used as forward error correction
(FEC) devices in many digital communications and multimedia products, including
mobile (cellular) phones, video and audio broadcasting receivers, and modems. VDs
are implementations of the Viterbi Algorithm (VA) used for decoding convolutional
or trellis codes1.

The continuing success of convolutional and trellis codes for FEC applications
in almost all modern digital communication and multimedia products is based on
three main factors:

The existence of an optimum Maximum Likelihood decoding algorithm { the
VA { with limited complexity, which is well suited for implementation.

The existence of classes of good (convolutional and trellis) codes suited for
many di�erent applications.

1Other important applications of the VA are e.g. equalization for transmission channels with

memory like multipath-fading channels and numerous applications apart from digital communi-

cations like pattern, text and speech recognition as well as magnetic recording. Due to lack of

space, only Viterbi decoding is considered here.
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The advances in digital silicon technology which make the implementation of
the VA possible even for sophisticated codes and high bit rate applications.

The coarse system level block diagram shown in Fig. 17.1 illustrates the use of
VDs in digital communication systems. The well known discrete time model with
the discrete time index k is used here in order to model transmitter, channel and
receiver.
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Figure 17.1 Viterbi Decoders in digital communication systems.

The signals emitted by the signal source are �rst compressed in a source en-
coder (e.g. a speech, audio or video encoder). The compressed information bits then
enter a convolutional encoder or trellis encoder, which introduces channel coding.
While the source encoder removes redundant and irrelevant information from the
source signal in order to reduce the transmission rate, the channel encoder deliber-
ately introduces the redundancy necessary to combat transmission impairments by
forward error correction (FEC). Coded symbols from a prede�ned and sometimes
multidimensional symbol alphabet are generated by the encoder and mapped onto
complex channel symbols which enter the modulator. Here, the signal is modulated
according to a chosen modulation scheme and carrier frequency. After transmission
over the channel, the received signal is �rst demodulated. Following, the demodu-
lated received symbols enter the VD. The soft (quantized) channel symbols available
in the demodulator can very advantageously be used by the VD. Hence, rather than
generating hard symbol decisions, the demodulator delivers a soft decision input
to the VD2. The corrected information bits are �nally decompressed in the source
decoder.

17.1.1 Viterbi Decoding Applications

Among the numerous applications of Viterbi decoding, we consider three areas
to be most important. The completely di�erent characteristics of these applications
emphasize the widespread use of Viterbi decoders in almost all modern telecommu-
nication standards.

2Soft decision Viterbi decoding leads to an increase in coding gain of about 2dB compared to

hard decision Viterbi decoding[9].
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1. Mobile (Cellular) Phones:
For mobile or cellular phone applications, the transmission channels are sub-
ject to various impairments like fading. Channel coding is essential in order to
obtain the desired transmission quality. Many communication standards like
the Global System for Mobile Communications (GSM) standard, the IS{54
digital cellular phone standard and the IS{95 CDMA standard specify the use
of convolutional codes.

2. Video and Audio Broadcasting Receivers:
Channel coding using convolutional codes is essential for almost all satellite
communication standards, among them the recent Digital Video Broadcasting
(DVB-S) standard for satellite transmission [8], the DSS standard as well as
the terrestrial Digital Audio Broadcasting (DAB) standard.

3. Modems:
Modems represent an application area where very advanced channel coding
techniques are used. Viterbi decoding for convolutional and trellis coded
modulation codes is e.g. employed in modems according to the recent 32kbps
and 54 kbps modem standards. Software DSP implementations are commonly
used due to the relatively low bit rate.

For low bit rate applications, Viterbi decoding is implemented in software on
digital signal processors (DSPs). The bit rate required by modern high quality
speech transmission represents the current limit for VD software implementations
due to the high computational requirements imposed by the VA. Hybrid DSP ar-
chitectures were developed with special datapaths supporting the particular VA
processing requirements. We focus here on higher bit rate applications, where the
VD is implemented in Very Large Scale Integration (VLSI) technology as a separate
hardware unit.

17.2 The Viterbi algorithm

In order to introduce the VA [1, 2] and the used notation, we exemplarily
discuss the simple convolutional encoder shown in Fig. 17.2.

The input stream of information bits is mapped onto k-bit information sym-

bols uk, which are input to a �nite state machine (FSM) generating n > k coded
bits from the information symbols. The ratio k=n (here 1=2) is called the code rate.
The larger the code rate, the smaller the amount of redundancy introduced by the
coder. With k = 1, only code rates 1=n are possible. Higher rate codes are known
for k > 1. Alternatively, higher rate codes can be created by using a 1=n base or
mother code and omitting (puncturing) a part of the coded bits after encoding as
speci�ed by a given puncturing pattern or puncture mask [12, 13, 14]. It is shown
in [12, 13] that the resulting punctured codes lead to reduced decoding complexity
compared to standard codes with the same code rate and k > 1 at negligible per-
formance losses. Today, k = 1 holds for virtually all practically relevant base codes
[6], therefore we consider only this case.

The n coded bits bi;k with i 2 f1; : : : ; ng represent the code symbols bk =Pn
j=1 bj;k � 2j�1 of a given symbol alphabet: bk 2 f0; : : : ; 2n � 1g. If the encoder

FSM has a memory of � bits, the code symbols are calculated from K = �+1 bits,
the FSM memory and the current input bit, respectively. K is called the constraint
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length of the code. The kth encoder state can be conveniently written as an integer
number:

xk =

��1X
j=0

xj;k 2j with xk 2 f0; : : : ; 2� � 1g; xj;k 2 f0; 1g (1)

Virtually all commonly used convolutional coders exhibit a feedforward shift
register structure. Additionally, in contrast to systematic codes, where the sequence
of input symbols appears unchanged at the output together with the added redun-
dancy, these convolutional codes are nonsystematic codes (NSCs). The coder is
described by a convolution of the sequence of input bits with polynomials Gi over
GF(2)

bi;k =

�X
j=0

gi;j � uk�j ; Gi =

�X
j=0

gi;j � 2j (2)

The generator polynomials Gi are of degree � and are usually not written as poly-
nomials, but as numbers in octal notation as shown in Eq. (2). Here, gi;j are
the binary coe�cients of the generator polynomial Gi. For the rate 1=2, � = 2
coder in Fig. 17.2, the generator polynomials are G0 = 7joctal = 111jbinary and

G1 = 5joctal = 101jbinary. Therefore, the structure of the encoder as shown in

Fig. 17.2 results3.
The code symbols generated by the encoder are subsequently mapped onto

complex valued channel symbols according to a given modulation scheme and a
prede�ned mapping function. In general, the channel symbols ck are tuples of
complex valued symbols. As an example, in Fig. 17.2, the symbol constellation
according to BPSK (binary phase shift keying) is shown. Here, each code symbol
is mapped onto a tuple of two successive BPSK symbols.

The concatenation of modulator, channel and demodulator as shown in
Fig. 17.1 is modeled by adding (complex valued) white noise nk to the channel
symbols ck

4. Hence, for the received symbols yk

yk = ck + nk (3)

holds. This model is adequate for a number of transmission channels e.g. in satellite
and deep space communication. Even if a given transmission channel can not be
described by additive white noise (e.g. in the case of fading channels), theory [7]
shows that the optimum demodulator or inner receiver has to be designed in a way
that the concatenation of modulator, channel and demodulator appears again as
an additive white noise channel. Sometimes, if successive demodulator outputs are
correlated (e.g. if equalization is employed in the demodulator or if noise bursts
occur), an interleaver is introduced in the transmitter at the coder output and the

3If not all k bits of the information symbols uk enter the coder, parallel state transitions occur

in the trellis: The parallel transitions are independent of the bypassed bits. Hence, a symbol-by-

symbol decision has to be implemented in the receiver for the bypassed bits. This situation can

be found in trellis encoders for trellis coded modulation (TCM) [10] codes.
4Note that, below, bold letters denote complex valued numbers, and capital letters denote

sequences of values in mathematical expressions.
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corresponding deinterleaver is introduced prior to Viterbi decoding. Interleaving
reduces the correlations between successive demodulator outputs.

The behavior of the encoder is illustrated by drawing the state transitions
of the FSM over time, as shown in Fig. 17.2. The resulting structure, the trellis

diagram or just trellis, is used by the Viterbi decoder to �nd the most likely sequence
of information symbols (indicated by the thick lines in Fig. 17.2) given the received
symbols yk. In the trellis, all possible encoder states are drawn as nodes, and
the possible state transitions are represented by lines connecting the nodes. Given
the initial state of the encoder FSM, there exists a one-to-one correspondence of
the FSM state sequence to the sequence of information symbols U = fukg with
k 2 f0; : : : ; T � 1g.
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Figure 17.2 Convolutional Coder and Trellis diagram.

The number of trellis states is N = 2� = 2K�1 and the number of branches
merging into one state is calledM , whereM = 2k is equal to the number of possible
information symbols uk. For binary symbols, M = 2 holds as shown in Fig. 17.2.
The trellis nodes representing state xk = i at time k are denoted as si;k.

A possible state transition is a branch in the trellis, and a possible state
sequence represents a path through the trellis.

In order to optimally retrieve the transmitted information one searches for the
channel symbol sequence Ĉ which has most likely generated the received symbol
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sequence Y . This approach is called Maximum Likelihood Sequence Estimation
(MLSE). Mathematically, this can be stated as follows. Given the received sequence

Y one sequence Ĉ is searched which maximizes the value of the likelihood function

P (Y jC):

Ĉ = argf max
all sequences C

P (Y jC)g (4)

Since the noise samples in Eq. (4) are statistically independent and the underlying
shift register process is a Markov process, the sequence likelihood function can be
factorized [2]:

P (Y jC) =

T�1Y
k=0

P (ykjck) (5)

Here, P (ykjck) is the conditional probability density function (PDF) of one received
sample yk given ck. In order to express P (ykjck), the PDF of the noise has to be
known.
Since the logarithm is a monotonic function, we can equally well maximize:

Ĉ = argf max
all sequences C

T�1X
k=0

log(P (ykjck))g (6)

The log{likelihood function log(P (ykjck)) is given the name branch metric or tran-
sition metric5.

We recall that to every branch in the trellis (see Fig. 17.2) there corresponds

exactly one tuple of channel symbols ck. We therefore assign a branch metric �
(m;i)

k

to every branch in the trellis. �
(m;i)

k denotes the branch metric of the m-th branch
leading to trellis state si;k, which is equal to the encoder state xk = i. Instead of

using �
(m;i)

k , which expresses the branch metric as a function of the branch label
m and the current state xk = i, it is sometimes more convenient to use �ij;k ,
which denotes the branch metric of the branch from trellis state sj;k to trellis state
si;k+1. The unit calculating all possible branch metrics in a Viterbi decoder is called
transition metric unit (TMU).

As an important example we consider zero mean complex valued additive
white Gaussian noise (AWGN) with uncorrelated inphase and quadrature compo-
nents and channel symbols ck consisting of a single complex value. We obtain for
the branch metric:

P (ykjck) =
1

��2
exp

jyk � ckj2
�2

(7)

and
log(P (ykjck)) � jyk � ckj2 (8)

where �2 is the variance of the complex valued gaussian random variable nk. From
Eq. (8) we observe the important fact that the branch metric is proportional to
the Euclidean distance between the received symbol yk and the channel symbol ck.
The sum in Eq. (6) represents the accumulation of the branch metrics along a given
path through the trellis according to the sequence C. It is called path metric. The

5The advantage of using the logarithm for the branch metrics will soon become apparent.
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path metric for a path leading to state si;k is called 
(m;i)

k , wherem 2 f0; : : : ;M�1g
denotes the path label of one of the M paths leading to state si;k.

Conceptually, the most likely sequence Ĉ can be found by an exhaustive search
as follows. We compute the path metric for every possible sequence C, hence for
every possible path through the trellis. The maximum likelihood path, which is the
path with the smallest Euclidean distance, corresponds to Ĉ:

Ĉ = argf min
all sequences C

T�1X
k=0

jyk � ckj2g (9)

Hence, maximizing the log{likelihood function as in Eq. (6) is equivalent to mini-
mizing the Euclidean distance as in Eq. (9).

Since the number of paths increases exponentially as a function of the length
of the sequence, the computational e�ort then also increases exponentially. For-
tunately, there exists a much more clever solution to the problem which carries
the name of its inventor, the Viterbi algorithm [1]. When using the VA, the com-
putational e�ort increases only linearly with the length of the trellis, hence the
computational e�ort per transmitted bit is constant.
The VA recursively solves the problem of �nding the most likely path by using a
fundamental principle of optimality �rst introduced by Bellman [5] which we cite
here for reference:
The Principle of Optimality: An optimal policy has the property that whatever the

initial state and initial decision are, the remaining decisions must constitute an

optimal policy with regard to the state resulting from the �rst decision.

In the present context of Viterbi decoding, we make use of this principle as follows.
If we start accumulating branch metrics along the paths through the trellis, the
following observation holds: Whenever two paths merge in one state, only the most
likely path (the best path or the survivor path) needs to be retained, since for all
possible extensions to these paths, the path which is currently better will always
stay better: For any given extension to the paths, both paths are extended by the
same branch metrics. This process is described by the add-compare-select (ACS)
recursion: The path with the best path metric leading to every state is determined
recursively for every step in the trellis. The metrics for the survivor paths for state
xk = i at trellis step k are called state metrics i;k below.

In order to determine the state metric i;k, we calculate the path metrics for
the paths leading to state xk = i by adding the state metrics of the predecessor
states and the corresponding branch metrics. The predecessor state xk�1 for one
branch m of the M possible branches m 2 f0 : : :M � 1g leading to state xk = i is
determined by the value resulting from evaluation of the state transition function

Z(): xk�1 = Z(m; i).


(m;i)

k = Z(m;i);k�1 + �
(m;i)

k ; m 2 f0; : : : ;M � 1g (10)

The state metric is then determined by selecting the best path:

i;k = Maxf(0;i)k ; : : : ; 
(M�1;i)

k g (11)

A sample ACS recursion for one state and M = 2 is shown in Fig. 17.3. This
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Figure 17.3 ACS recursion for M = 2

ACS recursion is performed for all N states in the trellis. The corresponding unit
calculating the ACS recursion for all N states is called ACS unit (ACSU).

Despite the recursive computation, there are still N best paths pursued by
the VA. The maximum likelihood path corresponding to the sequence Ĉ can be
�nally determined only after reaching the last state in the trellis. In order to
�nally retrieve this path and the corresponding sequence of information symbols
uk, either the sequences of information symbols or the sequences of ACS decisions
corresponding to each of the N survivor paths for all states i and all trellis steps k
have to be stored in the survivor memory unit (SMU) as shown in Fig. 17.2 while
calculating the ACS recursion. The decision for one branch m of M = 2k possible
branches is represented by the decision bits di;k = m.

So far, we considered only the case that the trellis diagram is terminated,
i.e. the start and end states are known. If the trellis is terminated, a �nal decision
on the overall best path is possible only at the very end of the trellis. The decoding
latency for the VA is then proportional to the length of the trellis. Additionally, the
size of the SMU grows linearly with the length of the trellis. Finally, in applications
like broadcasting, a continuous sequence of information bits has to be decoded
rather than a terminated sequence, i.e. no known start and end state exists.

Fortunately, even in this case, certain asymptotic properties allow an approx-
imate maximum likelihood sequence estimation with negligible performance losses
and limited implementation e�ort. These are the acquisition and truncation prop-
erties [3] of the VA. Consider Fig. 17.4: the VA is pursuing N survivor paths

3,k

1,k +λ 11,k

+λ 13,k

γ

γ

k-D

max

t/T

final survivor path

survivor depth D

k

Figure 17.4 Path trajectories for the VA at an intermediate trellis step k.
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at time instant k while decoding a certain trellis diagram. These paths merge,
when traced back over time, into a single path as exemplarily shown by the path
trajectories in Fig. 17.4. This path is called the �nal survivor below. For trel-
lis steps smaller than k � D, the paths have merged into the �nal survivor with
very high probability. The survivor depth D, which guarantees this behavior, de-
pends strongly on the used code. Since all N paths at trellis step k merge into
the �nal survivor, it is su�cient to actually consider only one path. Hence, it is
possible to uniquely determine the �nal survivor path for the trellis steps with in-
dex smaller than k �D already after performing the ACS recursion for trellis step
k. This property enables decoding with a �xed latency of D trellis steps even for
continuous transmission. Additionally, the survivor memory can be truncated: The
SMU has to store only a �xed number of decisions di;j for i 2 f0; : : : ; N � 1g and
j 2 fk �D; k �D + 1; : : : ; k � 1; kg.

If the overall best path (the path with the best state metric) at trellis step
k is used for determining the �nal survivor, the value of D guaranteeing that the
�nal survivor is acquired with su�ciently high probability is the survivor depth.
This procedure is called best state decoding [15, 16]. Sometimes, an arbitrary path
is chosen instead, in order to save the computational e�ort required in order to
determine the overall best path, which is called �xed state decoding. The properties
of these decoding schemes will be discussed in section 17.5.4.

A phenomenon very similar to the just described truncation behavior occurs
when the decoding process is started in midstream at trellis step k with an unknown
start state. Due to the unknown start state, the ACS recursion is started with equal
state metrics for all states. However, the decoding history which is necessary for
reliable decoding of the survivor path is not available for the initial trellis steps.
What happens if we perform the ACS recursion and try to decode the best path?
As indicated in Fig. 17.5, the probability that the �nal survivor path di�ers from
the correct path is then much larger than for decoding with a known start state.
Fortunately, the same decoding quality as for decoding with known start state is
achieved after processing a number of initial trellis steps. The number of trellis
steps which are required here is called acquisition depth. It can be shown that the
acquisition depth is equal to the survivor depth D [3, 17, 18]. This is also indicated
in Fig. 17.5, where the merging of the paths takes place at trellis step k +D.

k
t/T

correct path

k+D
final survivor path

ACS recursion starting with trellis step k

acquisition depth D survivor depth D

Figure 17.5 Path trajectories for acquisition.

Summarizing, the three basic units of a VD are depicted in Fig. 17.6. The
branch metrics are calculated from the received symbols in the Transition Met-
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ric Unit (TMU). These branch metrics are fed into the add{compare{select unit
(ACSU), which performs the ACS recursion for all states. The decisions generated
in the ACSU are stored and retrieved in the Survivor Memory Unit (SMU) in order
to �nally decode the source bits along the �nal survivor path. The ACSU is the
only recursive part in a VD, as indicated by the latch. The branch metric compu-
tation is the only part which di�ers signi�cantly if the VA is used for equalization
instead of decoding.

TMU ACSU SMU

Latch

channel
symbols y

k

branch
metrics

state
metrics

k

decision
bits

decoded
bits u

Figure 17.6 Viterbi Decoder block diagram.

Following, we state a computational model for transmitter, AWGN channel
and receiver, that will be used in the subsequent sections. The model is shown in
Fig. 17.7.
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Figure 17.7 Computational model for transmitter, AWGN channel and receiver.

In our model, we assume that the channel symbols have energy normalized
to unity after leaving the mapper for reasons of simplicity. Varying transmission
conditions are modeled by changing the signal energy to noise ratio Es=No. Es is
the signal energy, and No is the one sided power spectral density of the noise. Since
the additive noise is assumed to have a constant variance in the model, changes in
Es=No are modeled by changing the gain in the scaling block at the transmitter
output:

p
Es. In the receiver, a unit implementing automatic gain control (AGC) is

necessary in front of the analog{to{digital converter (ADC). In our computational
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model, the AGC just implements a �xed scaling by 1p
Es

, in order to normalize

the energy of the received demodulated symbols yk to unity again, which is just
a matter of mathematical convenience. Therefore, the reference symbols in the
decoder have the same magnitude and energy as in the encoder. Several issues
related to AGC and ADC are discussed in section 17.3. For actual Viterbi decoder
system design and assessment of the performance impact of all parameters and
quantization e�ects, system design and simulation tools like COSSAPTM [4] are
indispensable.

17.2.1 Example: K = 3 Convolutional Code with BPSK

As an implementation example, we will use the K = 3 rate 1=2 code with
generator polynomials (7; 5) with the trellis shown in Fig. 17.2. For BPSK, the
n = 2 coded bits for a state transition in the encoder are mapped onto two complex
valued BPSK symbols ck = (c1;k; c2;k) according to the mapping function:

c1;k = 1� 2b1;k = exp (i�b1;k)

c2;k = 1� 2b2;k = exp (i�b2;k)

If the additive noise is gaussian, the channel is AWGN and the likelihood
function P (ykjck) for the two successive received complex valued symbols yk =
(y1;k;y2;k) corresponding to a trellis transition is given by:

P (ykjck) = P (y1;kjc1;k) � P (y2;kjc2;k)

=

r
Es

�No

exp (�Es

No

jy1;k � c1;kj2) �
r

Es

�N0

exp (�Es

No

jy2;k � c2;kj2)
(12)

Hence, the corresponding branch metric is given by:

�
(m;i)

k = �Es

No

�
jy1;k � c1;kj2 + jy2;k � c2;kj2

	
+ 2ln(

r
Es

�No

) (13)

The term 2ln( ) which is common for all branch metrics can be neglected,
since this does not a�ect the path selection. Since the imaginary part of the chan-
nel symbols is always zero, the imaginary part yi;k;im of the received symbols
yi;k= yi;k;re + iyi;k;im only leads to an additive value which is common for all
branch metrics and can be neglected. Furthermore, if the quotient of signal energy
and noise power spectral density is constant over time, the factor Es

No

can also be
neglected:

�
(m;i)

k � �
�
(y1;k;re � c1;k;re)

2 + (y2;k;re � c2;k;re)
2
	

(14)

This calculation of the branch metrics is performed in the transition metric
unit TMU.

In order to calculate the ACS recursion in the ACS unit, we have to de�ne
the state transition function for the used K = 3 code. For feedforward shift register
coders, this function is given by

Z(m;xk) = Z(m; fxK�2;k; : : : ; x0;kg) = fxK�3;k; : : : ; x0;k;mg (15)
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if the branch label m is chosen to be equal to the bit shifted out of the encoder for
trellis step k.

For the resulting trellis with N = 23�1 = 4 states (see Fig. 17.2) the ACS
recursion is given by:

0;k+1 = Max(0;k + �
(0;0)

k+1 ; 1;k + �
(1;0)

k+1 )

1;k+1 = Max(2;k + �
(0;1)

k+1 ; 3;k + �
(1;1)

k+1 )

2;k+1 = Max(0;k + �
(0;2)

k+1 ; 1;k + �
(1;2)

k+1 )

3;k+1 = Max(2;k + �
(0;3)

k=1 ; 3;k + �
(1;3)

k+1 )

(16)

A generalization to more complex codes is obvious.

17.3 The transition metric unit (TMU)

In the TMU of a Viterbi decoder the branch metrics �
(m;i)

k are computed,
which are used in the ACSU to update the new state metrics i;k. The number
of di�erent branch metrics depends on the number of coded bits that are associ-
ated with a branch of the trellis. For a code of rate k

n
, 2n di�erent branch metrics

need to be computed for every trellis step. Since the ACSU uses only di�erences of
path metrics to decide upon survivor selection, arbitrary constants can be added
to the branch metrics belonging to a single trellis step without a�ecting the deci-
sions of the Viterbi decoder. Choosing these constants appropriately can simplify
implementations considerably.

Although the TMU can be quite complex if channel symbols of high com-
plexity (e.g. 64-QAM, etc) need to be processed, its complexity is usually small
compared to a complete Viterbi decoder. We restrict the discussion here to the
case of BPSK modulation, rate 1/2 codes and additive white gaussian noise. We
use yi;k instead of yi;k;re and ci;k instead of ci;k;re (cf Eq. (14)) in order to simplify
the notation6.

Starting from Eq. (14), we write the branch metrics as

�
(m;i)

k = C0

�
(y21;k � 2y1;kc1;k + c1;k

2) + (y22;k � 2y2;kc2;k + c2;k
2)
	
+ C1 (17)

with C0; C1 being constants.
Since c1;k and c2;k 2 f�1; 1g holds and the squared received symbols appear in

all di�erent branch metrics independently of the channel symbols that are associated
with the branches, the squared terms are constant for a set of branch metrics and
can be removed without a�ecting the decoding process7. Thus we can write the
actually computed branch metrics as

�
(m;i)

k

0
= C2 f�y1;kc1;k � y2;kc2;kg+ C3 with constants C2 < 0; C3 (18)

6Note that extension to QPSK (quaternary phase shift keying) is obvious. Then, y1;k and y2;k
denote the real and imaginary part of a single received complex valued symbol, respectively. c1;k
and c2;k denote the real and imaginary part of a single complex valued QPSK channel symbol.

7The terms (cx;k)
2 are not constant for every modulation scheme (e.g. for 16-QAM) and thus

cannot be neglected generally.
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In Eq. (18), C3 can be chosen independently for every trellis step k, while C2 must
be constant for di�erent k to avoid deterioration of the decoding process. For

hardware implementations C3 is advantageously chosen such that �
(m;i)

k

0
is always

positive. This enables the use of unsigned arithmetic in the ACSU for path metric
computations. For SW implementations it is often advantageous to chose C3 = 0

since then �
(0;i)

k

0
= ��(1;i)k

0
holds for all good rate 1/2 codes. This can be used to

reduce the computational complexity of the ACS computations.

17.3.1 Branch metric quantization

While the TMU usually has only a minor impact on the complexity of a
Viterbi decoder, the ACSU is a major part. The complexity of the ACSU depends
strongly on the wordlength of the branch metrics. It is thus important to reduce
the branch metric wordlength to the required minimum.

It is well known for a long time that a wordlength of w = 3 bits is almost
optimum for the received symbols in the case of BPSK modulation [6]. However,
this requires virtually ideal gain control before the Viterbi decoder. Thus larger
wordlengths are often used in practice to provide some margin for gain control.
For actual determination of the wordlengths in the presence of a given gain control
scheme and analog{to{digital conversion, system simulation have to be performed,
which can be done easily using tools like COSSAPTM [4].

To compute the branch metrics correctly it must be known how the \original"
input value is quantized to the input value of the TMU consisting of w bits. As
is pointed out already in [6], the quantization steps do not necessarily have to be
equidistantly spaced. However, only such \linear" schemes are considered here.

Step at zero quantization

Probably the most widely used quantization characteristic is a symmetrical in-
terpretation of a w-bit 2's complement number, by adding implicitely 0:5. Fig. 17.8
shows the characteristic of such a quantizer for 2 bits output wordlength. Q is the
2's complement output value of the quantizer, on the x-axis the normalized input
value is given and on the y-axis the interpretation of the output value Q which
actually is Y = Q+ 0:5.

Table 17.1 shows range and interpretation again for a 3-bit integer output
value of such a quantizer.

2's complement quantizer output value -4 . . . -1 0 . . . 3

interpretation due to quantizer characteristic -3.5 . . . -0.5 0.5 . . . 3.5

Table 17.1 Step at zero quantizer output value interpretation

Clearly, the quantizer input value 0 needs to be the decision threshold of
the quantizer between the associated normalized integer values �1 and 0, that are
interpreted as�0:5 and 0:5, respectively. Thus, the value zero cannot be represented
and the actual range of a 2w-level quantizer is symmetric. Even with a very low
average signal level before the quantizer the sign of the input signal is still retained
behind the quantizer. Thus the worst case performance using such a quantizer
characteristic is equivalent to hard decision decoding. Using this interpretation
and chosing C2 = 1 in Eq. (18) and w = 3, the resulting range of the (integer
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Figure 17.8 Characteristic of a 2-bit step-at-zero quantizer.

valued) branch metrics is

Min(�
(m;i)

k ) = C3 � 3:5� 3:5 = C3 � 7 (19)

Max(�
(m;i)

k ) = C3 + 7

thus, w+1 bits are su�cient for the branch metrics and C3 = 2w�1 can be chosen
to obtain always positive branch metrics.

Dead zone quantizer

A second quantization approach is to take the usual 2's complement value
without any o�set. Fig. 17.9 shows the characteristic of a 2-bit dead zone quantizer.

Q=-2

Q=-1

Q=0

Q=1 saturation

saturation
-2

-1

1

2

normalized
input
level

Interpretation

1 2-1-2

saturation (symmetric)

Figure 17.9 Characteristic of a 2-bit dead zone quantizer.

In this case the value 0 is output of the quantizer for a certain range around
input value 0, nominally for �0:5 < x � 0:5. In contrast to step at zero quanti-
zation, very low average signal levels before quantization will ultimately result in
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loosing the information about the input signal completely (even the sign), since the
quantizer then outputs zero values only. When using this quantizer characteristic
it is advantageous to compute the branch metrics as

�
(m;i)

k

0
= C3 +

1

2
f(y1;kc1;k +Abs(y1;k)) + (y2;kc2;k +Abs(y2;k))g (20)

This choice is legal since Abs(y1;k) + Abs(y2;k) is constant for every trellis
step and thus does not inuence the selection decisions of the ACSU. By choosing
C3 = 0 the range of the branch metrics is now

0 � �
(m;i)

k

0 � 2 Max(Abs(yk)) (21)

It is easily shown that the branch metrics are still integer values if computed ac-
cording to Eq. (20). For a usual w-bit integer with range f�2w�1; : : : ; 2w�1�1g the
resulting branch metric range is 0; : : : ; 2w which requires (w+1)-bit branch metrics.
However, by making the quantizer output range symmetrical, i.e. constraining y1;k
and y2;k to the interval f�2w�1+1; : : : ; 2w�1�1g the branch metric range becomes
f0; : : : ; 2w � 1g which can be represented with w-bit unsigned branch metrics (cf
[19]). Since symmetry is anyway advantageous to avoid a biased decoding process,
this is the option of choice.

With this approach we can either reduce the branch metric wordlength by
one bit and reduce the quantization levels by one (e.g. from 8 levels to 7 levels
for a 3-bit input value) or increase the input wordlength by one bit and thereby
provide more margin for non-ideal gain control. Thus the approach either leads to
decreased ACSU complexity or better performance at equal complexity since the
TMU complexity is in most cases still marginal.

17.3.2 Support of punctured codes

Since punctured codes are derived from a base code by deleting some code
bits prior to transmission, the decoder of the base code can be used if the TMU
can compute the branch metrics such that the missing information does not a�ect
the decisions of the remaining decoder. Assuming without loss of generality that
the second received value y2;k in the example above is missing, the TMU has to
compute the branch metrics such, that the terms

y2;kc2;k respectively y2;kc2;k +Abs(y2;k) (22)

evaluate to a constant for all di�erent branch metrics. To achieve this it is possible
to either replace y2;k with 0, or to manipulate the metric computation such that
c2;k is constant for all computed branch metrics, which is equivalent to relabeling
part of the branches of the trellis with di�erent code symbols.

Clearly, the �rst approach is applicable only if one of the quantized values
is actually interpreted as 0 (as for the Dead zone quantizer discussed above) since
y2;k = 0 can easily be chosen. For step at zero quantization, where the quantized
values are interpreted with an implicit o�set of 0.5, manipulating the branch labels
is the better choice since a replacement value of 0 is not straightforwardly available.
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17.4 The Add{Compare{Select Unit

Given the branch metrics, the ACSU calculates the state metrics according
to the ACS recursion, which represents a system of nonlinear recurrence equations.
Since the ACS operation is the only recursive part of the Viterbi algorithm, the
achievable data (and clock) rate of a VLSI implementation is determined by the
computation time of the ACS recursion. Due to the repeated accumulation of
branch metrics to state metrics, the magnitude of these metrics is potentially un-
bounded. Hence, metric normalization schemes are necessary for a �xed wordlength
implementation.

17.4.1 Metric normalization schemes

In order to prevent arithmetic overow situations and in order to keep the
register e�ort and the combinatorial delay for the add and compare operations in
the ACSU as small as possible, metric normalization schemes are used.

Several methods for state metric normalization are known, which are based
on two facts [20]:

1. The di�erences �k between all state metrics at any trellis step k are bounded
in magnitude by a �xed quantity �Max independent of the number of ACS
operations already performed in the trellis.

2. A common value may be subtracted from all state metrics for any trellis step
k, since the subtraction of a common value does not have any impact on the
results of the following metric comparisons.

Consider all paths starting from a given state si;k in the trellis, corresponding
to the state xk = i in the encoder. After a certain number n of trellis steps, all
other states can be reached starting with xk = i. Since one bit is shifted into the
encoder shift register for every trellis step, n is obviously equal to K � 1. In other
words, after K � 1 steps, an arbitrary shift register state is possible independent
of the initial state. Hence, the interval n ensures complete connectivity for all
trellis states. In the trellis, there are N distinct paths from the starting state to
all other states sj;k+n, j 2 f0; : : : ; N � 1g. An upper bound on the state metric
di�erence �Max can be found assuming that for one of these paths, the added

branch metric �
(m;i)

k was minimum for all n transitions, and for another of these
paths, the branch metric was always maximum. Hence, an upper bound on the
maximum metric di�erence is given by

�Max = n � (max(�(m;i)k )�min(�
(m;i)

k ))

with n = K � 1 and max(�
(m;i)

k ) and min(�
(m;i)

k ) being the maximum and min-
imum metric value possible using the chosen branch metric quantization scheme.
The wordlength necessary to represent �Max is the minimum wordlength required
for the state metrics8. However, depending on the chosen normalization scheme, a
larger wordlength has actually to be used in most cases. We now state two normal-
ization schemes:

8Even tighter bounds on the state metric di�erences were derived in [21].
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1. Subtracting the minimum State Metric

After a given number of trellis steps, the minimum state metric is determined
and subtracted from all other state metrics. This scheme leads to the minimum
state metric wordlength as derived above, if it is performed for every trellis step.
The resulting architecture for a single ACS processing element (PE) using this
normalization scheme is shown in Fig. 17.10.
If a normalization is performed only after a certain number of trellis steps, an
increased wordlength of the state metrics has to be taken into account.

adder
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comparator mux

i,k

subtractor

normalized
state
metric

ACS Processing Element for State i

γ
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γ
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λ (0,i)

k
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k
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decision
d

Figure 17.10 ACS processing element and minimum state metric subtraction.

The additional computational e�ort involved with this scheme is relatively
large: �rst, the minimum state metric has to be determined, second, a subtraction
has to be performed in addition to the usual add{compare{select operation. How-
ever, it may be suited for low throughput architectures and software applications.
The minimum state metric can then be determined sequentially while successively
calculating the new state metrics for a trellis transition, and the e�ort for the ad-
ditional subtraction does not pose a signi�cant problem.
2. \On the y" Normalization schemes

For high throughput applications, the ACS recursion is implemented with a ded-
icated ACS PE per trellis state. In this case, N new state metrics are calculated
in parallel for all states. Determining the minimum of these metrics would require
much more processing delay than the ACS calculation itself, hence more e�cient
ways have to be found for normalization.

A very e�cient normalization scheme can be found again exploiting the upper
bound on the metric di�erence �Max. The idea is simply to subtract a �xed value
from all state metrics if the state metrics exceed a certain threshold t. Simultane-
ously, it has to be guaranteed that no overows or underows occur for all state
metrics. The value of the threshold t can be chosen such that the detection of a
threshold excess and the necessary subtraction can be implemented as e�ciently
as possible, while keeping the state metric wordlength as small as possible. In the
following, one of the possible solutions for unsigned branch and state metrics is
presented:
The unsigned branch metrics are quantized to b bits, leading to a maximum branch

metric value of 2b�1 = max(�
(m;i)

k ). The unsigned state metrics are quantized with
p bits, corresponding to a maximum value of 2p � 1. Of course, �Max � 2p � 1
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must hold. If the number of bits p is chosen such that

�Max � 2p�2

a very e�cient normalization without additional subtraction can be derived. It is
now su�cient to observe just the value of the most signi�cant bit (MSB). If any
state metric value gets equal to or exceeds the value t = 2p�1, it is simultaneously
known that all other state metrics are equal to or larger than 2p�2 because of the
limited state metric di�erence. Hence, it is possible to subtract the value of 2p�2

from all state metrics while guaranteeing that all state metrics remain positive.
Both the test of the MSB and the subtraction of 2p�2 can be implemented

using very simple combinatorial logic involving only the two MSBs and a few com-
binatorial gates.

The inspection of the MSBs for all state metrics still requires global commu-
nication between all ACS PEs. This drawback can be removed by using modulo
arithmetic for the state metrics as proposed in [20]. Metric values exceeding the
range just wrap around according to the modulo arithmetic scheme, hence no global
detection of this situation is necessary. However, the state metric wordlength has
also to be increased to a value larger than the minimum given by �Max. Details
can be found in [20].

Due to the recursive nature of the ACS processing, the combinatorial delay
through the ACS PE determines the clock frequency (and hence the decoded bit
rate) of the whole Viterbi decoder. Arithmetic and logic optimization of the ACS
PE is therefore essential. Many proposals exist for optimizing the arithmetic in the
ACS. Every conventional addition scheme su�ers from the fact that the combina-
torial delay is some function of the wordlength, since a carry propagation occurs.
Redundant number systems allow carry free or limited carry propagation addition
[22, 23]. However, the maximum selection can not be solved straightforwardly in
redundant number systems. Nevertheless, a method was proposed allowing to use
the redundant carry{save number system for the ACS processing, which can be
very bene�cial if large wordlengths have to be used [17, 18].

17.4.2 Recursive ACS Architectures

We �rst consider the case that one step of the ACS recursion has to be cal-
culated in one clock cycle, and later briey disuss lower throughput architectures.
If a dedicated ACS PE is used for every state in the trellis, the resulting node par-
allel architecture with a throughput of one trellis step per clock cycle is shown in
Fig. 17.11. For reasons of simplicity, the state metric normalization is not shown in
this picture. A complete vector of decisions di;k is calculated for every clock cycle.
These decisions are stored in the SMU in order to facilitate the path reconstruction.
Obviously, a large wiring overhead occurs, since the state metrics have to be fed
back into the ACS PEs. The feedback network is a shu�e{exchange network. The
possible state transitions for the states xk =

P��1

j=0 xj;k 2
j are given by a cyclic shift

(perfect shu�e) x0;k; x��2;k; : : : ; x1;k and an exchange x0;k; x��2;k; : : : ; x1;k. where
x0;k denotes inversion of x0;k. Many proposals exist for optimum placement and
routing of this type of interconnection network (see e.g. [24]).

For lower throughput applications, several clock cycles are available for a sin-
gle ACS recursion. Here, the fact can be exploited that the trellis diagram for
nonrecursive rate 1=n codes includes buttery structures as known from FFT pro-
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Figure 17.11 Node parallel ACS architecture.

cessing. Since for rate 1=n codes, just a single bit is shifted into the encoder FSM,
the transition function specifying the two predecessor states for a current state
xk = fxK�2;k; : : : ; x0;kg is given by Z(m;xk) = fxK�3;k; : : : ; x0;k;mg as stated in
Eq. (15). These two predecessor states Z(0; xk) and Z(1; xk) have exactly two suc-
cessor states: fxK�2;k; : : : ; x0;kg and fxK�2;k; : : : ; x0;kg with xK�2;k denoting bit
inversion. This results in the well known buttery structure as shown in Fig. 17.12.
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In order to calculate two new state metrics contained in a buttery, only two
predecessor state metrics and two branch metrics have to be provided. Hence a
sequential schedule for calculating all ACS operations in the trellis is given by a
sequential calculation of the butteries. This is shown on the right hand side of
Fig. 17.12: two ACS PEs calculate sequentially the two ACS operations belonging
to a buttery, hence, a complete trellis step takes two clock cycles here. The ACS
operations according to the thick buttery are calculated in the �rst clock cycle,
and the remaining ACS operations are calculated in the second clock cycle.

In Fig. 17.12, a parallel ACS architecture with four ACS PEs and a resource
shared architecture with two ACS PEs are shown for the K = 3 code. As shown
in Fig. 17.12, it seems to be necessary to double the memory for the state met-
rics compared to the parallel ACS architecture, since the state metrics i;k+1 are
calculated while the old metrics i;k are still needed. It was shown in [25], how-
ever, that an in{place memory access for the state metrics is possible with a cyclic
metric addressing scheme. Here, only the same amount of memory is necessary
as for the parallel ACS architecture. Several proposals for resource shared ACSU
implementations can be found in [26, 27, 28, 29].

17.4.3 Parallelized ACS Architectures

The nonlinear data dependent nature of the recursion excludes the application
of known parallelization strategies like pipelining or look-ahead processing, which
are available for parallelizing linear recursions[30]. It was shown [31, 18, 32] that a
linear algebraic formulation of the ACS recursion can be derived, which, together
with the use of the acquisition and truncation properties of the Viterbi algorithm,
allows to derive purely feedforward architectures[31]. Additionally, the linear al-
gebraic formulation represents a very convenient way to describe a variety of ACS
architectures.

Below, the algebraic multiplication 
 denotes addition and the algebraic addi-
tion � denotes maximum selection. The resulting algebraic structure of a semiring
de�ned over the operations � and 
 contains the following neutral elements:

neutral element concerning � (maximum selection): Q(= �1)

neutral element concerning 
 (addition): 1(= 0)

Using the semiring algebra, the ACS recursion for the K = 3, rate 1/2 code as
stated in Eq. (15) can be written as:

0
B@
0
1
2
3

1
CA
k+1

=

0
B@
max(�00 + 0;�01 + 1)
max(�12 + 2;�13 + 3)
max(�20 + 0;�21 + 1)
max(�32 + 2;�33 + 3)

1
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k

=

0
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(�00 
 0)� (�01 
 1)
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k

(23)

Transition metrics not corresponding to allowed state transitions are assigned the
metric Q = �1. Of course, no computational e�ort is required for terms including
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the Q{value. Given a state metric vector �k = (0;k; : : : ; N�1;k)
T and an NxN

transition matrix �k containing all the transition metrics �ij;k, the above equation
can be written as a matrix{vector product:

�k+1 = �k 
 �k

It can be shown, that all rules known from linear algebra are applicable to this
linear algebraic formulation of the ACS recursion as well. Hence, is represents
much more than just a convenient notation, but allows to derive new algorithms
and architectures. It is e.g. possible to arrive at an M-step ACS recursion:

�k+M =M �k 
 �k = (�k+M�1 
 �k+M�2 
 : : :
 �k)
 �k

with an M-step transition matrix M�k describing the NxN optimum transition
metrics from every state at trellis step k to every state at trellis step k +M . This
approach is just another formulation of the original ACS recursion, i.e. the results
are exactly equivalent. Associativity of the 
 operation allows to reformulate the
recursion in this way.

This M step processing already allows a parallelization, since the M matrix{
matrix products can be calculated in advance, and the actual recursion now spans
M trellis steps, leading to a speedup factor of M . A disadvantage of the M-step ap-
proach is the computational e�ort necessary to calculate matrix-matrix products for
the NxN matrices �k. The matrices for single transitions contain many Q{entries,
as shown in the example Eq. (22). With successive matrix{matrix multiplications,
the number of Q{entries soon becomes zero, leading to an increased e�ort for ma-
trix multiplications since there is no computation necessary for the Q{entries as
stated above. Hence, an implementation for small M and especially M = 2 as
reported in [33] seems to be particularly attractive. In [33] it is proposed to unfold
the ACS recursion for a number of successive trellis steps, which is equivalent to
introducing an M{step recursion. A two{step ACS recursion is also advantageous
because there is more room for arithmetic optimization of the recursion equations,
since the concatenation of successive additions can be implemented quite advanta-
geously. Since two vectors of decison bits are generated simultaneously for a single
clock cycle, the resulting decoded bit rate is two times the clock frequency.
For larger values ofM , however, there is a signi�cant increase in the computational
e�ort when using the M{step approach.

However, it was shown by Fettweis [17, 18] that it is even possible to derive an
independent processing of blocks of received symbols leading to a purely feedforward
solution with an arbitrary degree of parallelism, the so called minimized method.
The key to this approach is the exploitation of the acquisition and truncation
properties of the VA.

We �rst review conventional Viterbi decoding with regard to the linear alge-
braic formulation: the M-step transition matrix contains the best paths from every
state at trellis step k to every state at trellis step k +M :

M�k =

0
@ M�00 M�01 : : : M�0(N�1)

M�10 M�11 : : : M�1(N�1)

M�(N�1)0 M�(N�1)1 : : : M�(N�1)(N�1)

1
A
k

Each entry M�ij contains the metric of the best path from state j at trellis step k

to state i at trellis step k +M .



22 Chapter 17

The conventional VA (for M = D) calculates recursively �k+D 
 (: : :
 (�k 

�k)) which is equal to D�k 
 �k. Hence the VA operation can also be interpreted
as follows: the VA adds the state metrics at trellis step k to the corresponding
matrix entries and then perform a rowwise (concerning D�k) maximum selection
leading to metrics for the N best paths at time instant k+D. If best state decoding
[15] is applied, the VA �nally selects the overall maximum likelihood survivor path
with metric i;k+D =D �ij + j;k including decoding the best state xk = j at time
instant k.

The conventional VA with best state decoding for trellis step k can hence also
be represented as

(1; : : : ; 1)
D �k 
 �k = i;k+D =D �ij + j;k (24)

since the multiplication with (1; : : : ; 1) in the semiring algebra corresponds to the
�nal overall maximum selection in conventional arithmetic. It is obvious that the
best state xk = j can be immediately accessed via the indices of the overall best
metric i;k+D =D �ij + j;k.

The state metric vector �k can be calculated by an acquisition iteration. It
was already discussed that the acquisition depth is equal to the survivor depth D.
Therefore, we start decoding in midstream at k�D with all state metrics equal to
zero.

�k =D �k�D 
 (1; : : : ; 1)T

Replacing �k in Eq. (24) leads to:

((1; : : : ; 1)
D �k)| {z }
truncation


 (D�k�D 
 (1; : : : ; 1)T )| {z }
acquisition

= ((D�k)
T 
 (1; : : : ; 1)T )T )| {z }
truncation


 (D�k�D 
 (1; : : : ; 1)T )| {z }
acquisition

= (0;k;T ; : : : ; N�1;k;T )
 (0;k;A; : : : ; N�1;k;A)
T (25)

Both matrix{vector products are equal to the usual ACS operation. Since
Eq. (24) is purely feedforward, we call the two iterations ACS acquisition iterations

below. Each of the two iterations leads to a state metric vector as shown in Eq. (24),
where the index T denotes truncation and the index A denotes acquisition. In a
�nal step, the two state metrics which are resulting per state are added, and the
overall maximum metric is determined. This can be veri�ed by writing out the
�nal expression in Eq. (24) and replacing semiring arithmetic with conventional
arithmetic. The state corresponding to the global maximum is �nally decoded. A
parallel architecture implementing Eq. (24) is shown in Fig. 17.13.

Obviously, an arbitrary number of ACS acquisition iterations can be per-
formed independently and hence in parallel for an arbitrary number of blocks con-
taining 2M symbols with M � D. It is most e�cient to use nonoverlapping con-
tiguous blocks of length 2D for this operation. The result is a number of uniquely
decoded states with distance 2D transitions, i.e. xk, xk+2D , : : :.

Using the known states resulting from the ACS acquisition iterations, a second
ACS iteration is started. The survivor decisions generated here are used { as for
a conventional Viterbi Decoder { to �nally trace back the decoded paths. For the
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trace back, best state decoding is performed, since the overall best state xk�D is
determined and used as a starting point for the trace back.

The resulting architecture that processes one block at a time is shown in
Fig. 17.14. It consumes one block of input symbols for every clock cycle. The
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latches are necessary to store values which are needed for the following block to be
processed in the next clock cycle.

It is possible to extend the architecture given in Fig. 17.14 by identical mod-
ules on the left and right hand side, leading to an even faster architecture that
consumes a number of blocks at a time. Therefore, in principle, an arbitrary degree
of parallelism can be achieved.

A detailed description of the Minimized Method architecture is given in
[34, 35, 36]. In order to achieve Gbit/s speed, a fully parallel and pipelined imple-
mentation of the Minimized Method was developed and realized as a CMOS ASIC
for Gbit/s Viterbi decoding [34]. Here, one dedicated ACS unit, with a dedicated
ACS processing element (PE) for every state, is implemented for each trellis tran-
sition. Bit level pipelining is implemented for the ACS PEs, which is possible since
the minimized method is purely feedforward. The fabricated ASIC [34] is one order
of magnitude faster than any other known Viterbi decoder implementation.

17.5 The survivor memory unit (SMU)

As was explained earlier, in principle all paths that are associated with the
trellis states at a certain time step k have to be reconstructed until they all have
merged to �nd the �nal survivor and thus the decoded information. However, in
practice only one path is reconstructed and the associated information at trellis
step k � D output (cf Fig. 17.4). D must be chosen such that all paths have
merged with su�ciently high probablility. If D is chosen too small (taking into
account code properties and whether �xed or best state decoding is performed)
substantial performance degradations result. The path reconstruction uses stored
path decisions from the ACSU. Clearly, the survivor depth D is an important
parameter of the SMU since the required memory to store the path decisions is
directly proportional to D for a �xed implementation architecture.

Fixed state decoding is usually preferred in parallel HW implementations
since �nding the largest state metric (for best state decoding) can be both, time
critical and costly in HW. However, since a signi�cantly larger D must be chosen
for �xed state decoding [15, 16], the involved trade-o� should be studied thoroughly
for optimum implementation e�ciency.

For the actual decoding process that is implemented in the SMU two di�erent
algorithms are known: the register exchange algorithm (REA) and the traceback
algorithm (TBA) [25, 6]. While register exchange implementations of SMUs are
known to be superior in terms of regularity of the design and decoding latency,
traceback implementations typically achieve lower power consumption and are more
easily adapted to lower speed requirements where more than one clock cycle is
available per trellis cycle for processing the data [37, 38]. While we focus here on
TBA and REA, it should be noted that the implementation of a hybrid REA/TBA
architecture was reported in [39] and further generalizations are treated in [40, 41].

17.5.1 REA

The REA computes the information symbol sequences of the survivor paths
associated with all N trellis-states based on the decisions provided by the ACSU.

If we denote the information symbol associated with the reconstructed path

belonging to state i at trellis step k as û
[i]

k and the information symbol associated
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with the m'th branch merging into state i as u(m;i), we can formally state the
algorithm as follows:

Memory:

(D + 1) �N Information Symbols (û
[i]

k
, ..., û

[i]

k�D
) ;

Algorithm:

// Update of the stored symbol sequences according to

// the current decision bits di;k

for t=k-D to k-1 f
for State=0 to N-1 f

û
[State]

t := û
[Z(dState;k;State)]
t+1 ;

g
g
// setting the first information symbol of the path

for State=0 to N-1 f

û
[State]

k
:= u(dState;k;State) ;

g

Here, Z(m;xk) is the state transition function as de�ned in Equation 15.
The nested loop describes how the stored information sequences corresponding to
the best paths at trellis step k � 1 are copied according to the decision bits deci,k
obtained at trellis step k in the ACS recursion. In the �nal loop the information
sequences for the N best paths are preceded with the information bits for step k.
For example, if at time k and state i, the path according to the branch with label
m = 1 is selected as the best path, the stored symbol sequence for the state branch
1 emerged from is copied as the new symbol sequence of state i preceded by the
information symbol associated with branch 1.
Assuming l-bit information symbols, the algorithm requires D �N � l bits of mem-
ory for a code with N states. If we de�ne the decoding latency as the di�erence
between the most recently processed trellis step k and the trellis step, the decoded
information is associated with, the decoding latency of the REA is identical to the
survivor depth D (neglecting implementation related delays, e.g. pipeline delay).
Both �gures are the minimum achievable for a given N and D. However, access
bandwidth to the memory is very high. Per trellis cycle each survivor symbol se-
quence is completely overwritten with new survivor symbols resulting in D �N read
and write accesses per cycle. Therefore in a fully parallel implementation the cells
are usually implemented as ip-ops (registers) and the selection of the possible
input symbols is done by means of multiplexors. Fig. 17.15 shows the resulting
hardware architecture for the sample K = 3, rate 1=2 code with 4 states and bi-
nary information symbols. The topology of the connections correspond to the
trellis topology, which can be a major drawback of the approach for large number
of states. Power consumption can be a problem in VLSI implementations due to
the high access bandwidth [42, 43]. As a consequence, the REA is usually not used
for low data rate decoders. It is applied if latency, regularity or total memory size
are critical parameters.



26 Chapter 17

d

3

0

1

2

d

d

d

0=

0

0
0

1
1

1
1

0 1 D

1

1=

1

1

0

0

0=

0=

PE

3,k

0,k

1,k

2,k

s

s

s

s

u

[1]

k-D

u

[2]

k-D

u

[3]

k-D

u

[0]

k-D

k-1

k-1

k-1

k-1

^

^

^

^

u

[1]
u

[2]
u

[3]
u

[0]^

^

^

^

u
(0,0)

u
(0,0)

u
(1,0)

u
(1,3)

k

k

k

k

u

[1]
u

[2]
u

[3]
u

[0]^

^

^

^

u

[1]

k-D+1

u

[2]

k-D+1

u

[3]

k-D+1

u

[0]

k-D+1

^

^

^

^

Figure 17.15 REA hardware architecture.

17.5.2 TBA

In contrast to the REA the TBA does not compute the information symbol

sequence associated with each state. Instead, the state sequence is computed based
on the path decisions di;k . In a second step the associated information symbols ûk
are computed. In practice, using D reconstruction steps a state of the �nal survivor
is acquired (D : survivor depth). Subsequently, the path is traced back M steps
further to obtain M symbols that are associated with the �nal survivor [37, 38] (M
: decoding depth). Fig. 17.16 shows a sample traceback sequence. Formally, we

Acquisition of final survivorDecoding

1
0

0

Decoded Sequence : 0 0 ... 0 1 0

00

k
u[0]^

k-D
u[0]^u[0]^

k-(D + M -1)

Figure 17.16 Example for the TBA.

can state the TBA as follows:

Memory:

(D +M) �N decision bits (di;k, ..., di;k�(D+M�1)) ;

Algorithm:

// every M trellis steps a trace back is started
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if (k-D can be divided by M) then f
// Initialization

traceState := startState ;

// Acquisition

for t=k downto k-D+1 f
traceState := Z(dtraceState;t,traceState) ;

g
// Decoding

for t=k-D downto k-D-M+1 f

û
[d]

t := u
(dtraceState;t;traceState) ;

traceState := Z(dtraceState;t,traceState) ;

g
g

The memory size of an implementation of our example must be at least
(D +M) � N bits to facilitate performing a data traceback with depth M while
maintaining D as survivor depth. Furthermore the decoding latency is increased to
at least D+M because tracing back requiresM+D ACS iterations to be performed
before the �rst trace back can be started9. Blocks of M symbols are decoded in re-
verse order during the data traceback phase, thus a last-in �rst-out (LIFO) memory
is required for reversing the order before outputting the information. Fast hardware
implementations require more memory and exhibit a larger latency.

The algorithm requires write accesses to store the N decision bits. Since a
trace back is started only everyM trellis steps, on average (M+D)=M decision bits
are read and trellis steps reconstructed for the computation of a single information
symbol. Thus the access bandwidth and computational requirements are greatly re-
duced compared to register exchange SMUs so RAMs can be used for storage which
can be implemented in VLSI with a much higher density than ipops particularly
in semi-custom technologies. Thus TBA implementations are usually more power
e�cient compared to REA implementations.

Furthermore, the choice of M relative to D (D is usually speci�ed) allows
memory requirements to be traded against computational complexity. And the
TBA can thus be adapted to constraints of the target technology more easily [37,
38, 44]. We will review the basic trade-o� in the next section.

17.5.3 TBA trade o�s

The inherent trade-o� in the TBA is best understood if visualized. This
can be done with a clock-time/trellis-time diagram, where the actual ongoing time
measured in clock cycles is given on the x-axis, while the time in the trellis is given
on the y-axis. Fig. 17.17 shows such a diagram for the TBA with M = D.

Henceforth we assume that a new set of decision bits is generated in every clock
cycle as is usually required in fast hardware implementations e.g. for digital video
broadcasting applications. Consider the �rst complete cycle of traceback processing
in Fig. 17.17 (Cycle 1). During the �rst 2 �D clock cycles, sets of decision bits are
written to the memory. In the subsequent D clock cycles the data is retrieved
to facilitate the acquisition of the �nal survivor (acquisition-trace). Finally the

9This minimum �gure is only achievable in low rate applications, since the actual computation

time for reconstruction is not already included!
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data is decoded by retrieving M = D sets of decision bits and tracing the �nal
survivor further back over time (data-trace), while concurrently a new acquisition-
trace is performed starting from trellis step 3 � D. In fact we obtain a solution
where acquisition-trace and data-trace are always performed concurrently, i.e. we
obtained a solution which requires two read pointers. The latency of the data-trace
is obtained as the di�erence in clock cycles from data write (at trellis step 0) until
the written information is accessed the last time (at clock cycle 4 �D). The required
memory is obtained on the y-axis as the number of kept decision bits before memory
can be reused (4 �D trellis steps with a total of 4 �D �N bits). We assumed here
that during the data-trace the memory is not immediately reused by writing the
new data into the memory location just read. Immediate reuse is possible if the
used memory technology permits a read and a write cycle to be performed in one
clock cycle which is usually not possible in commodity semi-custom technologies
for high throughput requirements.

N

N

N

decisions 
from ACSU

decisions for
acquisition

decisions for
decoding

Memory
Subsystem

Block
Traceback

11

1
1

block-start block-start

info-bits
decoded
sequenceLIFO

Figure 17.18 Architecture block diagram for traceback with M = D.

Fig. 17.18 shows a typical block diagram for a TBA with M = D and one
clock cycle per trellis step. Three building blocks are distinguished:
1) The memory subsystem including some control functionality and providing sets



Viterbi Decoders 29

of decision bits for acquisition and decoding, as well as a signal indicating the start
of a new trace back.
2) The actual path reconstruction which outputs decoded information bits in reverse
order and a block start indication.
3) The LIFO required to reverse the decoded information bits blockwise.
Typically, the memory subsystem dominates complexity and is a�ected strongly
by the choice of M and D. By accepting the overhead implied by using dual
port RAMs, a very simple architecture can be derived for M = D, that uses only 3
RAMs of sizeN �(D+1) bits. Fig. 17.19 shows the used addressing and multiplexing
scheme for the 3 RAMs that repeats after 6 cycles. Using the dual port RAMs, a

Cycle
RAM0 RAM1 RAM2

1

2

3

4

5

6

7 (=1)

0 D 0 D 0 D

write
acquisition
decode

conection between
acquisition-trace and 
data-trace

Figure 17.19 Cyclic addressing and multiplexing scheme for 3 dual port RAMs

and M = D.

memory location is overwritten one clock cycle after it was read for the last time.
This avoids concurrent read and write access to the same location, which is usually
not possible. Consider e.g. cycle 3. All memories are accessed in ascending order.
The �rst read access for acquisition, as well as data trace, is to address 1 of RAM1
and RAM2 respectively. Concurrently new data is written to address 0 of RAM2.
Thus in the subsequent step the read data at address 1 of RAM2 is overwritten
with new data. A closer look at the sequence of activity unvails that only a single
address generator is needed, that counts up from 1 to D and subsequently down
from D� 1 to 0. The write address equals the read address of the last clock cycle.
Fig. 17.20 shows the resulting architecture for the memory subsystem. The inputs
wIdle and rIdle are the access control ports of the RAMs.

A reduction in the memory requirements is possible by choosing a smallerM .
Fig. 17.21 shows an example for M = 0:5 �D, which reduces latency and memory
requirements to 3 �D and 3 �D �N respectively. However, this amounts to the price
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of three concurrent pointers [37, 38]. More important, we need to slice the memory
into blocks of depth D=2 trellis cycles (6 RAMs, denoted M1 . . .M6 in the �gure)
rather than blocks of depth D (as in Fig. 17.17) to be able to access the required
data, which complicates the architecture. Clearly, by choosing even smaller M the
memory gets sliced more severely and the corresponding architecture soon becomes
unattractive.

Tracing more than one trellis cycle per pointer and clock cycle has been con-
sidered for the case where more than one trellis step is decoded per clock cycle [33].
This can be done if the decisions from two subsequent trellis steps are stored in a
single data word (or parallel memories) and e�ectively doubles the data wordlength
of the RAMs while using half as many addresses. Since we can retrieve the informa-
tion for two trellis steps in one clock cycle using this approach, the traceback can
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evaluate two trellis steps per clock cycle, which leads to architectures with reduced
memory size.

Fig. 17.22 shows the resulting clock-time/trellis-time diagram for the scheme
proposed in [44] where acquisition-trace and data-trace are performed with even
di�erent speeds (cf [37]). Consider the �rst traceback in Fig. 17.22. While in every
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Figure 17.22 Dual Timescale Traceback with M = 0:5 �D.

clock cycle two sets of decision bits (2�N bits) are retrieved for acquisition-trace, two
sets of decision bits are retrieved every other clock cycle for the data-trace. We can
thus alternately retrieve the data for the data-trace and write a new set of decision
bits to the same memory location, i.e. immediate memory reuse is facilitated. And
since we need to read and write to one location within two cycles, this can actually
be performed with commodity semi-custom technologies and single port RAMs.
The obtained architecture exhibits a latency of 2:5 � D clock cycles and we need
only 2 � D � N bits of memory in four RAM-blocks with D=4 words of 2 � N bits.
The overall required memory is reduced, yet exchanging two sets of decision bits
leads to increased wiring overhead. The approach is thus best suited to moderate
N and large D, as given e.g. for punctured codes and N = 64.

As was pointed out, the TBA can be implemented using a wide range of
architectures. The choice of the optimum architecture depends on many factors
including technology constraints, throughput requirements and in some cases as well
latency requirements. Of course software implementations are subject to di�erent
trade o�s compared to hardware implementations and low throughput hardware
implementations may well use M = 1 if power consumption is dominated by other
components and the memory requirements need to be minimized.

17.5.4 Survivor depth

For actual dimensioning of the survivor depth D, D = 5K was stated for rate
1=2 codes as a rule of thumb [6]. However, this �gure is applicable only for best
state decoding, i.e. if the overall best path is used for determining the �nal survivor
as explained in section 17.2. For �xed state decoding, D must be chosen larger. In
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[15, 16], it is reported that if D is doubled for �xed state decoding, even asymptotic
performance losses are avoided10.

For punctured codes, D also must be chosen larger than for the non punctured
base code. In [45], D = 96 = 13:5K was the reported choice for a K = 7 base code
punctured to rate 7=8. For codes with rates smaller than 1=2, �nally, D can be
chosen smaller than 5K.

Although theoretical results and simulation results available in the literature
may serve as a guideline (e.g. [9, 46, 16, 15]), system simulations should be used
to determine the required survivor depth for a certain SMU implementation and
decoding scheme if �gures are not available for the particular code and SMU archi-
tecture. System design and simulation tools like COSSAPTM [4] are indispensable
here. Simulation can be very useful as well if the performance of the Viterbi de-
coder (including the choice of D) can be traded against the performance of other
(possibly less costly) parts of an overall system (cf [47]).

17.6 Synchronization of coded streams

As has been pointed out already, a step in the trellis is not generally associated
with the transmission of a single channel symbol. Indeed, if punctured codes are
used, the number of transmitted channel symbols per trellis step is time variant.
Furthermore, channel symbols can exhibit ambiguities that cannot be resolved by
synchronizers in the receiver front end. Consider the simple case of QPSK channel
symbols in conjunction with a punctured code of rate 1/2.

trellis step k k + 1 k + 2 k + 3

coded bits b1;k, b2;k b1;k+1, b2;k+1 b1;k+2, b2;k+2 b1;k+3, b2;k+3

punctured bits b1;k, b2;k b1;k+1, � b1;k+2, b2;k+2 b1;k+3, �

Table 17.2 Puncturing of a rate 1/2 base code to a rate 2/3 code

QPSK Symbol k k + 1 k + 3

Inphase value I1 = b1;k I2 = b1;k+1 I3 = b2;k+2

Quadrature value Q1 = b2;k Q2 = b1;k+2 Q3 = b1;k+3

Table 17.3 Assignment of the punctured rate 3/4 code symbols to QPSK symbols

Clearly, 4 trellis cycles and 3 transmitted QPSK symbols are necessary to
complete a mapping cycle. It has to be known how the blocks of 3 QPSK symbols
are embedded in the received symbols stream to facilitate decoding. Furthermore,
phase rotations of 90, 180 and 270 degrees of the QPSK symbols cannot be resolved
by the receiver front end and at least the 90 degree rotation needs to be corrected
prior to decoding11. Thus at least 2� 3 = 6 possible ways of embedding the blocks

10This seems to be a pessimistic value, and the authors strongly recommend to run system

simulations for a given application in order to determine the required value for the survivor

depth.
11For many codes, including the (177,131) standard code, an inversion of the input symbol

corresponds to valid code sequences associated with inverted information symbols. This inversion



Viterbi Decoders 33

of symbols in the received symbol stream need to be considered to �nd the state
that is the prerequisite for the actual decoding.

The detection of the position/phase of the blocks of symbols in the received
symbol stream and the required transformation of the symbol stream (i.e. rotating
and/or delaying the received channel symbols) is called node synchronization in the
case of convolutional coding. We call the di�erent possible ways the blocks can be
embedded in the received channel symbol stream synchronization states.

Node synchronization is essential for the reception of in�nite streams of coded
data, as applied for example in the current digital video satellite broadcasting
standards. If data is transferred in frames (as in all cellular phone systems) the
frame structure usually provides absolute timing and phase references that can be
used to provide correctly aligned streams to the Viterbi decoder.

There are three approaches known to facilitate estimation of the correct syn-
chronization state and thus node synchronization, which will be discussed below.

17.6.1 Metric growth based node synchronization

This approach was already suggested in the early literature on Viterbi decod-
ing [3]. It is based on the fact that the path metrics in a decoder grow faster in
a synchronized decoder compared to a decoder that is out-of-synch. However, the
metric growth depends on the signal to noise ratio and the average input magnitude.
This e�ect can substantially perturb the detection of changes in the synchronization
state (and thus reacquisition) once the Viterbi decoder is correctly synchronized.
Since more reliable approaches are known as described below, we do not consider
this method further.

17.6.2 Node synchronization based on bit error rate estimation

This approach is based on the fact that a correctly synchronized Viterbi de-
coder computes an output data stream that contains much fewer errors than the
input data stream. Thus the input data error rate can be estimated by re-encoding
the output stream and comparing the generated sequence with the input sequence.
Fig. 17.23 shows the resulting implementation architecture.

The received symbols are processed �rst in a block that can rotate and delay
the input symbols as required for all possible trial synchronization states. The
preprocessed stream is depunctured and decoded by a Viterbi decoder. The decoded
stream is coded and punctured again. Additionally, the preprocessed symbols are
sliced12 to obtain the underlying hard decision bits which are then delayed according
to the delay of the re-encoded data. The comparison result can be �ltered to
estimate the bit error rate of the input symbol stream. If the estimated error rate
exceeds a certain level, a new trial with a new synchronization state is performed
steered by some synchronization control functionality.

The approach has been implemented in several commercial designs. In HW
implementations, the delay line can be of considerable complexity in particular if
the Viterbi decoder exhibits a large decoding delay, i.e. for high rate codes and
trace back based SMU architectures.

cannot be resolved without using other properties of the information sequence. Thus resolving

the 90 degree ambiguity is su�cient for QPSK modulation in this case.
12Improved performance can be obtained by processing quantized symbols rather than hard

decisions [48]. In this case, the required delay line is of course more costly.
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17.6.3 Syndrome based node synchronization

Syndrome based node synchronization was introduced as a robust high per-
formance alternative to metric growth observation in [49].

The basic idea is depicted in Figures 17.24 and 17.25, assuming a code of rate
1/2 and BPSK transmission. All operations are performed on hard decisions in
GF(2), and all signals are represented by transfer functions. The information bits
uk enter the coder, where convolution with the generator polynomials takes place.
The code symbols b1;k and b2;k are then corrupted during transmission by adding
the error sequences e1k and e2k, respectively. In the receiver, another convolution
of the received sequences with the swapped generator polynomials takes place. In
practice, the values of in the receiver are calculated by slicing and de{mapping the
quantized received symbols yk.
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Figure 17.24 Syndrome computation in in{sync state.

From Fig. 17.24 it is easily seen that for the Z{transform of the syndrome

S(z) = E1(z) �G2(z) +E2(z) �G1(z) + 2U(z) �G1(z) �G2(z) (26)



Viterbi Decoders 35

holds. If the channel error sequences e1k and e2k and the corresponding Z{
transforms are zero, respectively, the syndrome sequence sk is also zero, since
2U(z) = 0 holds in GF(2). Therefore, the syndrome sequence depends only on
the channel error sequences E1(z); E2(z). For reasonable channel error rates, the
rate of ones in the syndrome stream sk is lower than 0.5.

Fig. 17.25 shows the e�ect of an additional reception delay, i.e. an out-of-synch
condition for the Viterbi decoder.
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Figure 17.25 Syndrome computation in out{of{sync state.

Now S(z) depends clearly on U(z) as well as on the channel error sequences
since

S(z) = E1(z) � Z�1 �G1(z) +E2(z) �G2(z) +U(z) � (G12(z) � Z�1 +G22(z)) (27)

holds. Now, S(z) essentially consists of equiprobable ones and zeros, i.e. the rate of
ones in the syndrome stream is 0.5. Thus an estimation of the actual rate of ones
in the syndrome serves as a measure to decide whether the actual trial corresponds
to an in-synch condition.

A strong advantage of syndrome based node synchronization is the complete
independence of the subsequent Viterbi decoder. The involved hardware complexity
is su�ciently low to enable the implementation of synchronizers that concurrently
investigate all possible synchronization states, which is not economically feasible
with other approaches. However, the parameters and syndrome polynomials are
more di�cult to determine as the parameters of the approach based on bit error
rate estimation. In particular, a poor choice of the syndrome polynomials can
seriously degrade performance [50]. For a detailed discussion, the reader is referred
to [49, 51] for rate 1/2 codes, [52, 53, 54] for rate 1/N codes, and [50] for rate
(N-1)/N codes.

17.7 Recent developments

Viterbi decoding as discussed in this chapter is applicable to all current com-
mercial applications of convolutional codes, although the basic algorithms need to
be extended in some applications (e.g. if applied to trellis coded modulation with
parallel branches in the trellis [10]). It is common to all these applications that the
decoder needs to compute an information sequence only (hard output decoding).

However, it has already been shown in [11] that a concatenation of several
codes can provide a better overall cost/performance trade o�. In fact serial con-
catenation (i.e. coding a stream twice subsequently with di�erent codes) has been
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chosen for deep space communcation and digital video broadcasting. While decod-
ing such codes is possible (and actually done) by decoding the involved (component)
codes independently, improved performance can be obtained by passing additional
information between the decoders of the component codes [55, 56].

In fact, the most prominent class of recently developed codes, the so called
TURBO codes [57] can no longer be decoded by decoding the component codes
independently. Decoding these codes is an iterative process for which in addition
to the information sequences, reliability estimates for each information symbol need
to be computed (soft outputs). Thus decoding algorithms for convolutional compo-
nent codes that provide soft outputs have recently gained considerable attention.
Large increases in coding gain are possible for concatenated or iterative (TURBO)
decoding systems [58, 59]. The most prominent soft output decoding algorithm
is the soft output Viterbi algorithm (SOVA) [60, 61], which can be derived as an
approximation to the optimum symbol by symbol detector, the symbol by symbol
MAP algorithm (MAP)13. The basic structure of the Viterbi algorithm is main-
tained for the SOVA. Major changes are necessary in the SMU, since now, a soft
quantized output has to be calculated rather than decoding an information se-
quence. E�cient architectures and implementations for the SOVA were presented
in [63, 64, 65, 62].

In the MAP algorithm, a posteriori probabilities are calculated for every sym-
bol, which represent the optimum statistical information which can be passed to a
subsequent decoding stage as a soft output. Although the MAP was already derived
in [66, 2], this was recognized only recently [60]. In its original form, the MAP algo-
rithm is much more computationally intensive than the Viterbi algorithm (VA) or
the SOVA. However, simpli�cations are known that lead to algorithms with reduced
implementation complexity [67, 68, 69, 70], It was shown in [71] that acquisition
and truncation properties can be exploited for the MAP as for the VA and the
SOVA. Thereby, e�cient VLSI architectures for the MAP can be derived for recur-
sive [72] and parallelized [73] implementations with implementation complexities
roughly comparable to the SOVA and the VA [71].
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