EE290 A: Advanced Topics in CAD Component Based Design of Electronic Systems Lecture 5

Professors Kurt Keutzer and Richard Newton

Department of Electrical Engineering and

Computer Sciences

University of California at Berkeley

Spring 1999

Outline of issues

Why components?

- Raw silicon capability
- Design productivity

What type of components?

- What size of component?
- What type/capability of component?

How will they be designed?

- Review of implementation alternatives
- Review of common design flows

Who are the players?

- foundries,
- fabless semiconductor, 3rd party IP providers, vertical semiconductor,
- system companies

Which design styles are likely to predominate

- Time-to market (productivity)
- Features
 - Process portability
 - In-field up-gradabilty, programmability
 - Quality of results

Example of System Behavior - ASVincentelli

NRTS: Raw Silicon Capability

Total microprocessor tr. ◆ Microprocessor logic tr.cm2 ◆ ASIC logic tr. cm2 ◆ Kurt Keutzer

NTRS: Microprocessor: total transistors/chip

NRTS: Chip Frequency (Ghz)

Design constraints

High-level (or low-level) system requirements get translated into specific design constraints for the integrated circuit

Primary factors are:

- Speed
 - To meet a standard e.g. 66MHz.
 - To meet an internal system requirement e.g. internal system bus speed of 200MHz.
 - To meet a specific market requirement e.g. 800MHz.
- Power
 - To meet a system power dissipation limit no fans!
 - To meet a chip cost limit plastic package (1Watt)
 - To differentiate the product (higher MIPS/Watt)
- Chip area
 - directly related to chip cost
- Reliability
 - System constraints such as 1/10,000 defective boards get translated into IC constraints such as 1 defective part per million (1 DPM)

Failure to meet any one of these can lead to a failed IC project

Implementation Approaches

Software running on a

- common microprocessor
- digital signal processor
- configurable-processor
- application-specific microprocessor
- **Hardware implementations**
 - reconfigurable logic
 - static (FPGA)
 - dynamic
 - standard-cell/gate-array
 - ``custom-logic''

Design Productivity by Approach

To Design, Implement, Verify

		10M tr/2.5M gates Staff Months	24M tr/6M Staff Months	64M tr/16M Staff Months
		62.5	150	400
Beh		125	300	800
RTL		625	1500	4000
gate	a d d q b s cik	6250	15,000	40,000
tr	- Ţ -	62,500	150,000	400,000

Why Productivity is Important 1:

What is the impact of 6 month delay in 6 year product cycle?

Find the fallacy in the picture above!

Why productivity is important 2:

Business Issues

A significant piece of intellectual property (e.g. microprocessor core) may be ``thrown in'' if you use a particular semiconductor facility (e.g. Motorola) in high volume (e.g. laser printer engine

IP components may be available to a company due to large ``patent portfolio swaps'' between major manufacturers (e.g. Lucent, IBM, TI)

There is an emerging legal world of 3rd Party IP licensing