Comparing Computing Machines

Dr. André DeHon UC Berkeley November 3, 1998

Talk

- Confusion (difficulties)
- Comparisons
- Caveats
- Characteristic Caricatures

Confusion

• Proponents:

 $-10 \times \rightarrow 100 \times \text{benefit}$

• Opponents:

- $-10 \times$ slower
- $-10 \times larger$

• ...and \exists examples where both are right.

Difficulty

- When we hear raw claims:
 - X is faster 10× faster than Y
- We know to be careful
 - How old is X compared to Y?
 - Know technology advances steadily
 - Even in same architecture family
 - 5 years can be 10×
 - How big/expensive is X compared to Y?
 - X have 10× resources of Y?

Clearing up Confusion

- How do we sort it all out?
 - Step 1: implement computation each way
 - Step 2: assess the results
 - Step 3: generalize lessons
- This talk about step 2:
 much difficulty lies here

Common Fallacies

- Comparing across technology generations without normalizing for technology differences
- Comparing widely different capacities
 - single chip versus board full of components
- Comparing
 - clock rate
 - or clock cycles
 - but not the total execution time (product)

Common Commodity

- Convert costs to a common, technology independent commodity
 - total normalized silicon area
- As an IC/system-on-a-chip architect
 - die area is the primary commodity

Technology (Area)

• Feature size (λ) shrinks

 $\lambda_1 = \kappa \lambda_0$

- devices shrink (κ^2)
- device capacity grows
 - $1/\kappa^2$ keep same die size
 - greater, if grow die size

$$\kappa = 0.7$$

 $\lambda_0 = 0.35/2$
 $\lambda_1 = 0.25/2$
1.0
0.5

Area Perspective

Technology (Speed)

- Raw speed:
 - logic delays decrease (κ , assuming V₁= κ V₀)
 - but voltage often not scaled
 - interconnect delays
 - break even in normalized units
 - process advances (Cu, thicker lines) improve
 - larger chips have longer wires

Capacity

- For highly parallel problems
 - more silicon
 - more computation
 - faster execution
- A board full of FPGAs gives a 10× speedup
 - would a board full of Processors also provide this speedup?
 - density or scalability advantage?

Most Economical Solution

- As an Engineer, want most computational power for my \$ (silicon area)
 - normalize silicon area to feature size
 - results mostly portable across technologies
 - normalize performance to capacity
 - least area for fixed performance
 - most performance in fixed area
 - look at throughput (compute time) in absolute time, possibly normalized to technology

Example: Multiply

re Time	m 40 ns	m 26 ns	m 50 ns	m 2900 ns
Featu	0.63μ	0.60μ	0.65μ	0.75μ
Architecture	Custom 16×16	FPGA	16b DSP	RISC

Example: Multiply Area

Time	40 ns	26 NS		50 ns	2900 ns
Area	2.6M λ^2	1.25M λ^2 /CLB×316 CLBs	$395M\lambda^2$	$350M\lambda^2$	125M λ^2 , 66 ns/cycle×44 cycles
Feature	0.63μ m	0.60 µm		0.65µm	$0.75 \mu m$
Architecture	Custom 16×16	FPGA		16b DSP	RISC

Example: Multiply Normalized

Architecture	Feature	Area	Time	
Custom 16×16	0.63μ m	2.6M ²	40 ns	9.6
FPGA	0.60 µm	1.25M λ^2 /CLB×316 CLBs	26 ns	0.097
		$395M\lambda^2$		
16b DSP	0.65µm	$350M\lambda^2$	50 ns	0.057
RISC	$0.75\mu m$	125M λ^2 , 66 ns/cycle×44 cycles	2900 ns	0.0028

Example: Multiply Summary

Architecture	Feature	Area and Time	16×	16	ŝ	æ
	Size (λ)		<u>mpy</u> X ² S	scale X ² S	<u>mpy</u>	<u>scale</u> X ² S
Custom 16×16	0.63 µm	2.6M ³² , 40 ns	9.6	9.6	9.6	9.6
Custom 8×8	0.80 µm	3.3M λ^2 , 4.3 ns			70	70
Gate-Array 16×16	0.75 µm	$26M\lambda^2$, $30ns$	1.3	1.3	1.3	1.3
FPGA	0.60µm	1.25M12/CLB				
(XC4K)		316 CLBs, 26 ns	0.097			
		84 CLBs, 40 ns		0.24		
		220 CLBs, 12.1 ns			0.30	
		22 CLBs, 25 ns				1.5
16b DSP	0.65µm	350M ² , 50 ns	0.057	0.057	0.057	0.057
RISC	0.75 µm	125M λ^2 , 66 ns/cycle				
(no multiplier)		two 16b operands – 44 cycles	0.0028			
		16b constant – 7 cycles		0.017		
		one 8b operand – 24 cycles			0.0051	
		8b constant – 4 cycles				0.030

Example: FIR

Architecture	Feature Size (>)	$\frac{TAP_s}{\sqrt{26}}$
32b RISC	$0.75\mu m$	0.020
16b DSP	0.65µm	0.057
32b RISC/DSP	0.25μ m	0.021
64b RISC	0.18µum	0.064
FPGA (XC4K)	0.60 µm	1.9
(Altera 8K)	0.30µm	3.6
Full Custom	0.75μ m	3.6
	0.60µm	3.5
	0.75μ m	2.4
(fixed coefficient)	0.60µm	56
(<i>n.b.</i> 16b samples)		

Example: FIR

Architecture	Feature	Area and Time	
	Size (\)		$rac{TAP_s}{\lambda^2 \mathbf{S}}$
32b RISC	0.75μ m	125M\lambda ² , 66 ns/cycle×6+cycles/TAP	0.020
16b DSP	0.65 μ m	350M1/2, 50 ns/TAP	0.057
32b RISC/DSP	$0.25 \mu m$	$1.2G\lambda^2$, 40 ns/TAP	0.021
64b RISC	0.18µm	6.8G λ^2 , 2.3 ns/TAP	0.064
FPGA (XC4K)	0.60µm	240 CLBs, 14.3 ns/8-TAPs	1.9
(Altera 8K)	0.30μ m	30 LEs \times 0.92M λ^2 /LE, 10 ns/TAP	3.6
Full Custom	0.75μ m	400M\2, 45 ns/64 TAPs	3.6
	0.60 µm	140M\\2, 33 ns/16 TAPs	3.5
	0.75μ m	82M\2 ² , 50 ns/10 TAPs	2.4
(fixed coefficient)	0.60 µm	114M\\2, 6.7 ns/43 TAPs	56
		(<i>n.b.</i> 16b samples)	

ture

Example: DNA/Splash Revisited

N.B. includes memory area for SPLASH

Area-Time Curves

- Simple performance density picture complicated by:
 - Non-ideal area-time curves
 - Non-scalable designs
 - Limited parallelism
 - Limited throughput requirements

AT Example: FIR

Characterization

- Performance alone doesn't tell the story
- Need to track:
 - resource requirements
 - *e.g.* CLBs, components
 - absolute compute time
 - energy
 - technology
- Scaling (A-T) curves are beneficial

Summary

- To conquer confusion:
 - compare FPGA-based computations with alternative implementation technologies
 - take care in comparison to normalize
- Many reasons for choosing a technology beyond cost/performance
 - always want to know what you're paying for what you get