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Outline

• Raw trends

• Implication of trends - SOC/component based
design

• Challenges in component based design

• Homework 1
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Semiconductor Capital Investment
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Moore’s Law
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NTRS: Microprocessor: total transistors/chip
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NRTS: ASIC/Microprocessor logic transistors
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NRTS: Chip Frequency (Ghz)

0

1.0

3.0

5.0

7.0

9.0

1997 1999 2001 2003 2006 2009 2012

10.0

On-chip, global clock, high performance 

On-chip, local clock, high-performance

Clock Speed GHz.

8Kurt Keutzer & Richard Newton

Evolution of the EDA Industry

Effort

(EDA tools effort)

Results

(Design Productivity)
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What’s next?

McKinsey S-Curve
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To Design, Implement, Verify 10M transistors
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Why?:The Deep Sub-Micron Double-Whammy

Stolen back by Prof. Kurt Keutzer, UC Berkeley
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Crisis: Productivity Gap
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Within a 50K - 100K Module

75 - 100% delay in gates
3.5µ - 1.0µ
1980 - 1990
.18µ - 0.1µ
1998 - 2005

This flow
should work
OK for blocks
of 50-100K
gates and
should
continue to
work OK in the
future

Library

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

physical
design

layout

Proper sizing within flow is
absolutely required

• typically: size down then up

• try: size up- then down
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• Implication of trends - SOC/component based
design

• Challenges in component based design

• Homework 1
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Design Paradigm: Re-useable IP

Semiconductor Industry

3rd Party
Designers

Customer
Designs

µP DSP Encryp-
tion

Reused blocks

Silicon
capability
enables
integration of
entire systems
on a single die

Achieve required design productivity
by assembling re-useable
blocks of intellectual property (IP)
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Also: Trend towards programmable Solutions

µP ASIC
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µP Software running on a
(Multi-)Microprocessor
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Key Forces Driving Component-based  Design

Exponentially increasing complexity device
complexity/capability

Productivity / Time-to-market requirements more
stringent

Synthesis from very high-level descriptions does not
provide adequate quality-of-results

Trends toward programmable solutions
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Next Step in the Evolution of the EDA Industry

Effort

(EDA tools effort)

Results

(Design Productivity)
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Transistor entry - Calma, Computervision

Schematic Entry - Daisy, Mentor, Valid

Synthesis - Cadence, Synopsys

Component-
based design

McKinsey S-Curve
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Growing list of IP Blocks

Video: MPEG, DVD, HDTV

Audio: MP3, voice recognition

Processors: CPUs, DSPs, Java

Networking: ATM, Ethernet,
ISDN, FibreChannel, SONET

Bus: PCI, USB, IEEE 1394

Memory: SRAM, ROM, CAM

Wireless: CDMA, TDMA

Communication: modems, transceivers

Coding: speech, Viterbi, Reed-Solomon

Display drivers/controllers: TFT

Other: sensors, encryption/decryption, GPS

Power PC core: 3.1mm2 in 0.35µ

ARM Core: 3.8 mm2 in 0.35µ
MPEG2 Decoder: ~65k gates

PCI Bus: ~8k gates

Ethernet MAC: ~7k gates (soft)

RSA Encryption: ~7k gates
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Example: Configurable Microprocessor

Describe the
processor
attributes from
a browser-like
interface

Using the
tensilica
processor
generator,
create...

ALU

Pipe

I/O

Timer

MMURegister File

Cache

Tailored, RTL
uP core

Customized
Compiler,
Assembler,
Linker,
Debugger,
Simulator

Use a
standard cell
library to
target to the
silicon
process
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Easily select Instruction Set attributes
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Set Memory and Cache attributes
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Outline

• Raw trends

• Implication of trends - SOC/component based
design

• Challenges in component based design

• Homework 1
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Challenges in Component-based Design

What is a component - what is the right quanta/granularity of capability?

Design

• How are components described?

• How are they modeled?

Implementation

• How do we trade-off between HW and SW implementations?

• In HW how do we trade off between soft, firm, and hard macros?

Verification

• How do we verify individual components?

• How do we verify component interfaces?

• How do we verify a family of parameterizable instances?
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What is a Component?

• A component is defined as any fully encapsulated behavior.
l It is analogous to an object in object-oriented programming in

that it may have an associated state, behavior, and identity.

• We use the term component, rather than object, to stress the fact
that the implementation medium— logic, memory, software,
reconfigurable logic, or some combination— is not a factor in the
specification of the component itself.

CN

Component
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What is a Component?

• Access to components is provided via an interface and
the interface is the only way to interact with the
component.

CN

Component

interface

26Kurt Keutzer & Richard Newton

What is a Component?

• A system is defined as one or more, possibly interacting,
components and their associated environment.

• The environment specifies all of the external constraints and all
possible inputs the collection of components might be asked to
respond to and so closes the system.

CN

system

environment

Component

interface
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Challenges in Component-based Design

What is a component - what is the right quanta/granularity of capability?

Design

• How are components described?

• How are they modeled?

Implementation

• How do we trade-off between HW and SW implementations?

• In HW how do we trade off between soft, firm, and hard macros?

Verification

• How do we verify individual components?

• How do we verify component interfaces?

• How do we verify a family of parameterizable instances?
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The Seven Views of Computer Systems

View One: Structural Levels of a Computer System

View Two: Levy’s Levels of Interpreters

View Three: Packaging Levels of Integration

View Four: A Marketplace View of Computer Classes

View Five: An Applications/Functional View of Computer
Classes

View Six: The Practice of Design

View Seven: The BLAAUW Characterization of Computer
 Design
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View One: Hierarchy of Computer Levels

Adapted from
Bell and Newell [1971]
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View Two: A Hierarchy of Interpreters

[Levy, 1974]
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Design: How are Components Described
and How are They Modeled?
Today, most “software” components are described using either assembly

language or a C model

l Compiled and executed using C development environment for a target
processor ISA

l Semantics defined operationally by the compiler/assembler and
“language extensions” via packages and system calls
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Design: How are Components Described
and How are They Modeled?
Today, most “hardware” components are described using a “C model”

l Compiled and executed using C development environment

l Usually an “untimed” model

l Central issues: handling concurrency, special data types, language
subsets, language extensions via packages

In certain application-specific areas, other approaches are more common
(e.g. SPW, Cosap, Matlab)

l Usually embodies a particular model of sequence/time and specifies a
particular path to implementation

l New “general-purpose” approaches under development and research

l CoWare, Felix, Polis, Ptolemy-2, JavaTime, …

Central Issue: Relationship of Description/Specification to final
implementation
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Design: How are Components Described
and How are They Modeled?

At lower levels of abstraction:
l Register Transfer Level (RTL): VHDL, Verilog
l Gate Level: Vendor gate library (NAND, flip-flop, etc.)-

schematic
l Physical: Mask layout (rectangles on layers)

Ways of delivering SOC IP:
l Hard: Detailed and fully-characterized layout in a specific

process
l Soft: RTL Level in Verilog or VHDL; “implementation

independent”
l Firm: Soft + a collection of constraints and requirements

for the implementation
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What is an Architecture?

m Amdahl, Blaauw, and Brooks, 1964, defined three interfaces:

Computer Architecture: "The attributes of a computer as seen by a
machine language programmer."

Implementation: "Actual hardware structure, logic design, and
datapath organization."

Realization: "Encompasses the logic technologies, packaging, and
interconnection.”

m Hennessy and Patterson

Instruction-Set Architecture: programmer-visible instruction set.
Serves as a boundary between the hardware and the software.

Organization: High-level aspects of a computer’s design, including
the memory system, bus architecture, and internal CPU design

Hardware: Used to refer to the specifics of a machine. Including
detailed logic design and packaging technology

Architecture: covers all three aspects.



35Kurt Keutzer & Richard Newton

What is an Architecture?
m A description of the behavior of a system that is independent of its

implementation.
Ô  Isomorphic to its "interface specification" (Siewiorek, Bell,

Newell, 1971)

For example:
Ô  Instruction set definition of a computer
Ô  Z-domain description of a filter
Ô  Handshaking protocol for a bus

m May guide implementation (contain 'hints' or 'pragmas')
e.g. a particular specification may lead naturally to a serial or

parallel implementation.
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What is an Instruction-Set Architecture?

Example: Instruction set

Inst_A 
Inst_B 
Inst_C 
... 
Inst_C may not 
follow Inst_A

Inst_A 
Inst_B 
Inst_C 
... 
Inst_C may not 
follow Inst_A because 
Inst_A uses a scratchpad 
register that Inst_C will 
over-write.

Architecture Not architecture
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Specification vs. Description
Specification: Saying what I want; describes behavior in terms of

results.
e.g. ∀ A { A[i,j] ←  0}

Description: Saying how to do it; describes behavior in terms of
procedure or process.
e.g. for(i=0; i<N; i++)

for(j=0; j<M; j++)
A[i][j] = 0;

 We do not have specification languages for general-purpose
digital design. For some special-purpose applications (e.g.
DSP) we do.

Languages versus Models
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VHDL: The “nroff/latex” of Design

VHDL-Based
Synthesis
System
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Encoding Information in Time & Space

In Most HDLs, "wires" are declared but
the passage of time is embedded in
the control structures.

We are caught up (once again!) with
imperative, sequential thinking and a
Von Neumann model.

 We need a way of capturing both
temporal and spatial encoding in a
single, unified mathematical model.

 Use a type mechanism: "τ-types"
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Challenges in Component-based Design

What is a component - what is the right quanta/granularity of capability?

Design

• How are components described?

• How are they modeled?

Implementation

• How do we trade-off between HW and SW implementations?

• In HW how do we trade off between soft, firm, and hard macros?

Verification

• How do we verify individual components?

• How do we verify component interfaces?

• How do we verify a family of parameterizable instances?
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SOC Block Integration Layer

Architecture for SOC

Application

Hardware Interface (electrical)

Fine-Grain API

Coarse-Grain API (thread level)

Application API
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Thread
PDA Budget

(1)Threads mapped
     to processing units

A Vision: Design System 2010

Constraints: Real time, 
PDA, Precision

Communication Complexity

Specification

Threader

Thread Optimization
& Implementation

Microarchitectural
Optimization

FUFU FU FU FU

CU
Processing Unit

(2) Functional units and
    coprocessors allocated
    to processing unit

COTS Silicon

(3) Functional unit
     implemented as 
hardware/”software”

Memory Datapath

LogicMIL-IP

FU
FU
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System-On-A-Chip: 1998

Embedded µP Core 90K CBA gates
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Transition to Extensive Use of Regular Structures

Intel 4004 (‘71)Intel 4004 (‘71)
Intel 8080Intel 8080 Intel 8085Intel 8085

Intel 8286Intel 8286 Intel 8486Intel 8486
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Move Towards Regularity and Programmability

Intel 4004 (‘71)Intel 4004 (‘71)
Intel 8080Intel 8080 Intel 8085Intel 8085

Intel 8286Intel 8286 Intel 8486Intel 8486
Regular logic Programmable structure Other (random logic, etc.)
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Example of System Behavior
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From Alberto Sangiovanni-Vincentelli
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IP-Based Design of Behavior

Front
End  1

Transport
Decode  2

Rate
Buffer

12

Rate
Buffer

9

Rate
Buffer

5

Sensor

Synch
Control

4

Video
Decode  6

Audio
Decode/

Output    10

Mem
11

User/Sys
Control

3

Mem
13

Frame
Buffer

7
Video

Output  8

Satellite Dish

Cable

remote

monitor

speakers

Test-bench

Base-band Processing
(Matlab,SPW)

Decoding Algorithms
(Matlab possibly coming from a library)

Transport Decode
Written in C

User Interface
Written in C

System Integration
Communication Protocol

From Alberto Sangiovanni-Vincentelli
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IP-Based Design of Implementation

DSP RAMDSP RAM

ExternalExternal
I/OI/O

System System 
RAMRAM

DSPDSP
ProcessorProcessor

  P
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or
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us

ControlControl
ProcessorProcessor

MPEGMPEG

PeripheralPeripheral

AudioAudio
DecodeDecode

Which DSP
Processor?  C50?

Can DSP be done on
Micro-controller?

Which Bus?  PI?
AMBA?

Dedicated Bus for
DSP?

Which
Micro-controller?

ARM?  HC11?

Do I need a dedicated Audio Decoder?
Can decode be done on Micro-controller?

How fast will my
User Interface

Software run?  How
Much can I fit on my

Micro-controller?

Can I Buy
an MPEG2
Processor?

Which One?

From Alberto Sangiovanni-Vincentelli
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Separate Behavior from Architecture

FrontFront
End  End  11

TransportTransport
Decode  Decode  22

RateRate
BufferBuffer
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VideoVideo
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 System Behavior
l Functional Specification

of System.

l No notion of hardware or
software!

Implementation Architecture
l Hardware and Software

l Optimized Computer
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Map Between Behavior and Architecture

FrontFront
End  End  11

TransportTransport
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Basic Principles

Design Methodology general enough to capture most of application domains

Existing methods should be modeled to allow transition

Powerful policies to allow fast development of complex systems with correctness
guarantees

Policies supported by verification and synthesis tools both at the abstract and at
the physical level

Constraint-based Approach to generate appropriate guiding principles for
Subsequent Implementation steps

Validation of ideas can only come by applying it to “real” designs

From Alberto Sangiovanni-Vincentelli
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System Level Design

Design Methodology:
l Top Down Aspect:

l Formalization: precise unambiguous semantics
l Abstraction:  capture the desired system details
l Decomposition: partitioning the system behavior into simpler

behaviors
l Successive Refinements: refine the abstraction level down to the

implementation by filling in details and passing constraints

l Bottom Up Aspect:
l IP Re-use (even at the algorithmic and functional level)
l Components of architecture from pre-existing library

From Alberto Sangiovanni-Vincentelli
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System Design

Synthesis Verification

Architecture Function

Mapping

HW SW

From Alberto Sangiovanni-Vincentelli
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Behavioral
 Function

Combines Behavioral Parameters and Architectural Models

HW
library

Network of
Modules

M
ap

pi
ng

Hardware Path

Model
Library

SW
library

Processor
Model

Co
de

G
en

er
at

io
n

Software Path

ARM8

Model
Library

Estimation and Modeling

From Alberto Sangiovanni-Vincentelli
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Communication Refinement

Separate Function of blocks from inter-block
Communication

Substitute lower-level detail for communications
behavior

IP Block IP Block
Pr

ot
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C
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IP Block  With
Generic Data

Transfer

IP Block  With
Generic Data

Transfer

From Alberto Sangiovanni-Vincentelli
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Communication Refinement

Standard interfaces  constitute the backbone of an IP market: abstract form the concerns of
hardware implementation (multi-target VC), abstract from the concerns of a particular bus
(bus-independent VC)

  

system transaction, «ANY» data structure (e.g. video line)

hardware or software

«ANY BUS» operation (data, address...)
VSI-Alliance OCB Group.
Virtual Component Interface (VCI)

Physical Bus (e.g.
PIBus)
fixed bus-width,
detailed protocol

Bus Wrapper
Communication Interface (e.g.
bounded FIFO)

From Alberto Sangiovanni-Vincentelli
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My System
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Challenges in Component-based Design

What is a component - what is the right quanta/granularity of capability?

Design

• How are components described?

• How are they modeled?

Implementation

• How do we trade-off between HW and SW implementations?

• In HW how do we trade off between soft, firm, and hard macros?

Verification

• How do we verify individual components?

• How do we verify component interfaces?

• How do we verify a family of parameterizable instances?
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System-on-a-Chip IP Creation and
Analysis Flow
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System-on-a-Chip Design Flow
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System-on-a-Chip Integration Flow
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Berkeley Wireless Research Center (BWRC)

Conventional cellular 
phone solution

•Research into technology
and design methodologies
for CMOS single chip radios

•Exploring future applications
of wireless technology, 4th
generation and beyond
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BWRC Long-Term Research Drivers

Universal Radios for 4th Generation
l Two generations beyond present digital cellular

l Low energy, high-performance programmable computing platform
l Systems and circuits focus to resolve rules of engagement at the air

interface  and to allow for peaceful co-existence

Picoradios
l Ultra-low power, low cost, embedded CMOS radio’s ( < 1 mW)
l EDA systems for rapid, optimized  implementation

Ultra-High Bandwidth Millimeter Radios
l Scaled CMOS solutions for 20 - 60 GHz operation
l Architectures and Device modeling
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Homework 1: JPEG as a Component

You are to evaluate/estimate one of a number of possible
implementations of the JPEG specification (description?)
provided on the course web page.

You will estimate, as accurately as you can and with as much
justification as you can:

l Frames/second

l Frames/mW

l Production cost of your solution

You may work in groups of one or two

Your results should be submitted online by Friday, 1/29, 5pm

We will compare results and assumptions in Week 3
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Scenario 2 Implications: Power as the Driver
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We believe power always has been the driver!

Source: R. Brodersen, Berkeley
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Challenges in Component-based Design

What is a component - what is the right quanta/granularity of capability?

Design

• How are components described?

• How are they modeled?

Implementation

• How do we trade-off between HW and SW implementations?

• In HW how do we trade off between soft, firm, and hard macros?

Verification

• How do we verify individual components?

• How do we verify component interfaces?

• How do we verify a family of parameterizable instances?


