
1Kurt Keutzer & Richard Newton

EE290 A: Advanced Topics in CADEE290 A: Advanced Topics in CAD
Component Based DesignComponent Based Design

of Electronic Systemsof Electronic Systems
Professors Kurt Professors Kurt Keutzer Keutzer and Richard Newtonand Richard Newton

Department of Electrical Engineering and ComputerDepartment of Electrical Engineering and Computer
SciencesSciences

University of California at BerkeleyUniversity of California at Berkeley

Spring 1999Spring 1999

2Kurt Keutzer & Richard Newton

Outline

• Raw trends

• Implication of trends - SOC/component based
design

• Challenges in component based design

• Homework 1

3Kurt Keutzer & Richard Newton

Semiconductor Capital Investment

0

10

20

30

40

50

60

70

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 0
Year of Investment

In
ve

st
m

en
t (

$B
)

Asia
Europe
Japan
USA

Source: Dataquest

Projected

4Kurt Keutzer & Richard Newton

Moore’s Law

1

10

100

1K

10K

100K

1M

10M

1975 1980 1985 1990 1995

Transistors

10x/6 years10x/6 years

8086
68000

68020
80386

80486

68040

Pentium

Pentium Pro
PPC601

PPC603

8080
4004

MIPS R4000

Microprocessors

5Kurt Keutzer & Richard Newton

NTRS: Microprocessor: total transistors/chip

1

11M

22M

44M

88M

176M

352M

704M

1997 1999 2001 2003 2006

1408M

2009 2012

6Kurt Keutzer & Richard Newton

NRTS: ASIC/Microprocessor logic transistors

1

4M

8M

16M

32M

64M

128M

256M

1997 1999 2001 2003 2006

512M

2009 2012

Total microprocessor tr. Microprocessor logic tr.cm2 ASIC logic tr. cm2

7Kurt Keutzer & Richard Newton

NRTS: Chip Frequency (Ghz)

0

1.0

3.0

5.0

7.0

9.0

1997 1999 2001 2003 2006 2009 2012

10.0

On-chip, global clock, high performance

On-chip, local clock, high-performance

Clock Speed GHz.

8Kurt Keutzer & Richard Newton

Evolution of the EDA Industry

Effort

(EDA tools effort)

Results

(Design Productivity)

a

b

s

q
0

1

d

clk

19 78

19 85

19 9 2

19 9 9

Transistor entry - Calma, Computervision

Schematic Entry - Daisy, Mentor, Valid

Synthesis - Cadence, Synopsys

What’s next?

McKinsey S-Curve

9Kurt Keutzer & Richard Newton

To Design, Implement, Verify 10M transistors

a

b

s

q
0

1

d

clk

62.5

125

625

6250

62,500

Power

Delay

Area

Beh

RTL

Implementations here are
often not good enough

Because implementations
here are inferior/ unpredictable

Staff Months

10Kurt Keutzer & Richard Newton

Why?:The Deep Sub-Micron Double-Whammy

Stolen back by Prof. Kurt Keutzer, UC Berkeley

11Kurt Keutzer & Richard Newton

Crisis: Productivity Gap

1

L
og

ic
 T

ra
ns

is
to

rs
 p

er
 C

hi
p

(K

)

 P

ro
du

ct
iv

ity
T

ra
ns

./S
ta

ff
 -

M
o.

10

100

1,000

10,000

100,000

1,000,000

10,000,000

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000Logic Tr./Chip
Tr./S.M.

 58%/Yr. compound
Complexity growth rate

21%/Yr. compound
Productivity growth rate

Source:
SEMATECH19

81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
03

20
01

20
05

20
07

20
09

xx
x

x x
x

x

2.5µ

.10µ

.35µ

12Kurt Keutzer & Richard Newton

Within a 50K - 100K Module

75 - 100% delay in gates
3.5µ - 1.0µ
1980 - 1990
.18µ - 0.1µ
1998 - 2005

This flow
should work
OK for blocks
of 50-100K
gates and
should
continue to
work OK in the
future

Library

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

physical
design

layout

Proper sizing within flow is
absolutely required

• typically: size down then up

• try: size up- then down

13Kurt Keutzer & Richard Newton

Outline

• Raw trends

• Implication of trends - SOC/component based
design

• Challenges in component based design

• Homework 1

14Kurt Keutzer & Richard Newton

Design Paradigm: Re-useable IP

Semiconductor Industry

3rd Party
Designers

Customer
Designs

µP DSP Encryp-
tion

Reused blocks

Silicon
capability
enables
integration of
entire systems
on a single die

Achieve required design productivity
by assembling re-useable
blocks of intellectual property (IP)

15Kurt Keutzer & Richard Newton

Also: Trend towards programmable Solutions

µP ASIC

memory

ASSP

ASSP

ASIC

Today System on a chip

FPGA-based system

memory

µP

memory

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

memory

Program
ROM

A/D

D/A

P=>S

S=>P

Core
µP

ASIC
Circuitry

DMA

µP Software running on a
(Multi-)Microprocessor

16Kurt Keutzer & Richard Newton

Key Forces Driving Component-based Design

Exponentially increasing complexity device
complexity/capability

Productivity / Time-to-market requirements more
stringent

Synthesis from very high-level descriptions does not
provide adequate quality-of-results

Trends toward programmable solutions

17Kurt Keutzer & Richard Newton

Next Step in the Evolution of the EDA Industry

Effort

(EDA tools effort)

Results

(Design Productivity)

a

b

s

q
0

1

d

clk

19 78

19 85

19 9 2

19 9 9

Transistor entry - Calma, Computervision

Schematic Entry - Daisy, Mentor, Valid

Synthesis - Cadence, Synopsys

Component-
based design

McKinsey S-Curve

18Kurt Keutzer & Richard Newton

Growing list of IP Blocks

Video: MPEG, DVD, HDTV

Audio: MP3, voice recognition

Processors: CPUs, DSPs, Java

Networking: ATM, Ethernet,
ISDN, FibreChannel, SONET

Bus: PCI, USB, IEEE 1394

Memory: SRAM, ROM, CAM

Wireless: CDMA, TDMA

Communication: modems, transceivers

Coding: speech, Viterbi, Reed-Solomon

Display drivers/controllers: TFT

Other: sensors, encryption/decryption, GPS

Power PC core: 3.1mm2 in 0.35µ

ARM Core: 3.8 mm2 in 0.35µ
MPEG2 Decoder: ~65k gates

PCI Bus: ~8k gates

Ethernet MAC: ~7k gates (soft)

RSA Encryption: ~7k gates

19Kurt Keutzer & Richard Newton

Example: Configurable Microprocessor

Describe the
processor
attributes from
a browser-like
interface

Using the
tensilica
processor
generator,
create...

ALU

Pipe

I/O

Timer

MMURegister File

Cache

Tailored, RTL
uP core

Customized
Compiler,
Assembler,
Linker,
Debugger,
Simulator

Use a
standard cell
library to
target to the
silicon
process

20Kurt Keutzer & Richard Newton

Easily select Instruction Set attributes

21Kurt Keutzer & Richard Newton

Set Memory and Cache attributes

22Kurt Keutzer & Richard Newton

Outline

• Raw trends

• Implication of trends - SOC/component based
design

• Challenges in component based design

• Homework 1

23Kurt Keutzer & Richard Newton

Challenges in Component-based Design

What is a component - what is the right quanta/granularity of capability?

Design

• How are components described?

• How are they modeled?

Implementation

• How do we trade-off between HW and SW implementations?

• In HW how do we trade off between soft, firm, and hard macros?

Verification

• How do we verify individual components?

• How do we verify component interfaces?

• How do we verify a family of parameterizable instances?

24Kurt Keutzer & Richard Newton

What is a Component?

• A component is defined as any fully encapsulated behavior.
l It is analogous to an object in object-oriented programming in

that it may have an associated state, behavior, and identity.

• We use the term component, rather than object, to stress the fact
that the implementation medium— logic, memory, software,
reconfigurable logic, or some combination— is not a factor in the
specification of the component itself.

CN

Component

25Kurt Keutzer & Richard Newton

What is a Component?

• Access to components is provided via an interface and
the interface is the only way to interact with the
component.

CN

Component

interface

26Kurt Keutzer & Richard Newton

What is a Component?

• A system is defined as one or more, possibly interacting,
components and their associated environment.

• The environment specifies all of the external constraints and all
possible inputs the collection of components might be asked to
respond to and so closes the system.

CN

system

environment

Component

interface

27Kurt Keutzer & Richard Newton

Challenges in Component-based Design

What is a component - what is the right quanta/granularity of capability?

Design

• How are components described?

• How are they modeled?

Implementation

• How do we trade-off between HW and SW implementations?

• In HW how do we trade off between soft, firm, and hard macros?

Verification

• How do we verify individual components?

• How do we verify component interfaces?

• How do we verify a family of parameterizable instances?

28Kurt Keutzer & Richard Newton

The Seven Views of Computer Systems

View One: Structural Levels of a Computer System

View Two: Levy’s Levels of Interpreters

View Three: Packaging Levels of Integration

View Four: A Marketplace View of Computer Classes

View Five: An Applications/Functional View of Computer
Classes

View Six: The Practice of Design

View Seven: The BLAAUW Characterization of Computer
 Design

29Kurt Keutzer & Richard Newton

View One: Hierarchy of Computer Levels

Adapted from
Bell and Newell [1971]

30Kurt Keutzer & Richard Newton

View Two: A Hierarchy of Interpreters

[Levy, 1974]

31Kurt Keutzer & Richard Newton

Design: How are Components Described
and How are They Modeled?
Today, most “software” components are described using either assembly

language or a C model

l Compiled and executed using C development environment for a target
processor ISA

l Semantics defined operationally by the compiler/assembler and
“language extensions” via packages and system calls

32Kurt Keutzer & Richard Newton

Design: How are Components Described
and How are They Modeled?
Today, most “hardware” components are described using a “C model”

l Compiled and executed using C development environment

l Usually an “untimed” model

l Central issues: handling concurrency, special data types, language
subsets, language extensions via packages

In certain application-specific areas, other approaches are more common
(e.g. SPW, Cosap, Matlab)

l Usually embodies a particular model of sequence/time and specifies a
particular path to implementation

l New “general-purpose” approaches under development and research

l CoWare, Felix, Polis, Ptolemy-2, JavaTime, …

Central Issue: Relationship of Description/Specification to final
implementation

33Kurt Keutzer & Richard Newton

Design: How are Components Described
and How are They Modeled?

At lower levels of abstraction:
l Register Transfer Level (RTL): VHDL, Verilog
l Gate Level: Vendor gate library (NAND, flip-flop, etc.)-

schematic
l Physical: Mask layout (rectangles on layers)

Ways of delivering SOC IP:
l Hard: Detailed and fully-characterized layout in a specific

process
l Soft: RTL Level in Verilog or VHDL; “implementation

independent”
l Firm: Soft + a collection of constraints and requirements

for the implementation

34Kurt Keutzer & Richard Newton

What is an Architecture?

m Amdahl, Blaauw, and Brooks, 1964, defined three interfaces:

Computer Architecture: "The attributes of a computer as seen by a
machine language programmer."

Implementation: "Actual hardware structure, logic design, and
datapath organization."

Realization: "Encompasses the logic technologies, packaging, and
interconnection.”

m Hennessy and Patterson

Instruction-Set Architecture: programmer-visible instruction set.
Serves as a boundary between the hardware and the software.

Organization: High-level aspects of a computer’s design, including
the memory system, bus architecture, and internal CPU design

Hardware: Used to refer to the specifics of a machine. Including
detailed logic design and packaging technology

Architecture: covers all three aspects.

35Kurt Keutzer & Richard Newton

What is an Architecture?
m A description of the behavior of a system that is independent of its

implementation.
Ô Isomorphic to its "interface specification" (Siewiorek, Bell,

Newell, 1971)

For example:
Ô Instruction set definition of a computer
Ô Z-domain description of a filter
Ô Handshaking protocol for a bus

m May guide implementation (contain 'hints' or 'pragmas')
e.g. a particular specification may lead naturally to a serial or

parallel implementation.

36Kurt Keutzer & Richard Newton

What is an Instruction-Set Architecture?

Example: Instruction set

Inst_A
Inst_B
Inst_C
...
Inst_C may not
follow Inst_A

Inst_A
Inst_B
Inst_C
...
Inst_C may not
follow Inst_A because
Inst_A uses a scratchpad
register that Inst_C will
over-write.

Architecture Not architecture

37Kurt Keutzer & Richard Newton

Specification vs. Description
Specification: Saying what I want; describes behavior in terms of

results.
e.g. ∀ A { A[i,j] ← 0}

Description: Saying how to do it; describes behavior in terms of
procedure or process.
e.g. for(i=0; i<N; i++)

for(j=0; j<M; j++)
A[i][j] = 0;

 We do not have specification languages for general-purpose
digital design. For some special-purpose applications (e.g.
DSP) we do.

Languages versus Models

⊕

D D

D

D D

D

⊕ ⊕

⊕
⊕ ⊕

⊕

⊕
⊕ ⊕

⊕
⊕

⊕

⊕ ⊕

⊕
⊕ ⊕

⊕
⊕ ⊕

⊕⊕

⊕

⊕ ⊕
⊗

⊗ ⊗ ⊗ ⊗

⊗

⊗ ⊗

D

Esterel MatlabVHDL
UML“C, C++”

Discrete
Event

Synchronous
Reactive

“FSMs” C for
RTOS

FPGA-Based “Von Neumann”
Processor

Hard-Wired
ASIC RTOS

Language

Model of
Computation

Implementation
Media

Languages versus Models

⊕

D D

D

D D

D

⊕ ⊕

⊕
⊕ ⊕

⊕

⊕
⊕ ⊕

⊕
⊕

⊕

⊕ ⊕

⊕
⊕ ⊕

⊕
⊕ ⊕

⊕⊕

⊕

⊕ ⊕
⊗

⊗ ⊗ ⊗ ⊗

⊗

⊗ ⊗

D

Esterel MatlabVHDL
UML“C, C++”

Discrete
Event

Synchronous
Reactive

“FSMs” C for
RTOS

FPGA-Based “Von Neumann”
Processor

Hard-Wired
ASIC RTOS

Languages versus Models

⊕

D D

D

D D

D

⊕ ⊕

⊕
⊕ ⊕

⊕

⊕
⊕ ⊕

⊕
⊕

⊕

⊕ ⊕

⊕
⊕ ⊕

⊕
⊕ ⊕

⊕⊕

⊕

⊕ ⊕
⊗

⊗ ⊗ ⊗ ⊗

⊗

⊗ ⊗

D

Esterel MatlabVHDL
UML“C, C++”

Synchronous
Reactive

FPGA-Based “Von Neumann”
Processor

Hard-Wired
ASIC RTOS

SLSMSLSMMLSMMLSM

(really just syntax)

41

VHDL: The “nroff/latex” of Design

VHDL-Based
Synthesis
System

42Kurt Keutzer & Richard Newton

Encoding Information in Time & Space

In Most HDLs, "wires" are declared but
the passage of time is embedded in
the control structures.

We are caught up (once again!) with
imperative, sequential thinking and a
Von Neumann model.

 We need a way of capturing both
temporal and spatial encoding in a
single, unified mathematical model.

 Use a type mechanism: "τ-types"

43Kurt Keutzer & Richard Newton

Challenges in Component-based Design

What is a component - what is the right quanta/granularity of capability?

Design

• How are components described?

• How are they modeled?

Implementation

• How do we trade-off between HW and SW implementations?

• In HW how do we trade off between soft, firm, and hard macros?

Verification

• How do we verify individual components?

• How do we verify component interfaces?

• How do we verify a family of parameterizable instances?

44Kurt Keutzer & Richard Newton

SOC Block Integration Layer

Architecture for SOC

Application

Hardware Interface (electrical)

Fine-Grain API

Coarse-Grain API (thread level)

Application API

Vector Processor
Interface

V
ec

to
r

St
ag

e

V
ec

to
r

St
ag

e

V
ec

to
r

St
ag

e

V
ec

to
r

St
ag

e

V
ec

to
r

St
ag

e

General-Purpose
Processor
with BIOS

and OS

Multi-User
Interface

45Kurt Keutzer & Richard Newton

Thread
PDA Budget

(1)Threads mapped
 to processing units

A Vision: Design System 2010

Constraints: Real time,
PDA, Precision

Communication Complexity

Specification

Threader

Thread Optimization
& Implementation

Microarchitectural
Optimization

FUFU FU FU FU

CU
Processing Unit

(2) Functional units and
 coprocessors allocated
 to processing unit

COTS Silicon

(3) Functional unit
 implemented as
hardware/”software”

Memory Datapath

LogicMIL-IP

FU
FU

46Kurt Keutzer & Richard Newton

System-On-A-Chip: 1998

Embedded µP Core 90K CBA gates

47Kurt Keutzer & Richard Newton

Transition to Extensive Use of Regular Structures

Intel 4004 (‘71)Intel 4004 (‘71)
Intel 8080Intel 8080 Intel 8085Intel 8085

Intel 8286Intel 8286 Intel 8486Intel 8486

48Kurt Keutzer & Richard Newton

Move Towards Regularity and Programmability

Intel 4004 (‘71)Intel 4004 (‘71)
Intel 8080Intel 8080 Intel 8085Intel 8085

Intel 8286Intel 8286 Intel 8486Intel 8486
Regular logic Programmable structure Other (random logic, etc.)

49Kurt Keutzer & Richard Newton

Particular Function (e.g. MPEG)

E
va

lu
at

io
ns

/W

Time

GP proc
ess

or

ASIC

Non real-time

Real-time
requirement

X-GP proc
ess

or

50Kurt Keutzer & Richard Newton

Example of System Behavior

FrontFront
End End 11

TransportTransport
Decode Decode 22

RateRate
BufferBuffer

1212

RateRate
BufferBuffer

99

RateRate
BufferBuffer

55

SensorSensor

SynchSynch
ControlControl

44

VideoVideo
Decode Decode 66

AudioAudio
Decode/Decode/

Output Output 1010

MemMem
1111

User/SysUser/Sys
ControlControl

33

MemMem
1313

FrameFrame
BufferBuffer

77

VideoVideo
Output Output 88

Satellite DishSatellite Dish

CableCable

remoteremote

monitormonitor

speakersspeakers

From Alberto Sangiovanni-Vincentelli

51Kurt Keutzer & Richard Newton

IP-Based Design of Behavior

Front
End 1

Transport
Decode 2

Rate
Buffer

12

Rate
Buffer

9

Rate
Buffer

5

Sensor

Synch
Control

4

Video
Decode 6

Audio
Decode/

Output 10

Mem
11

User/Sys
Control

3

Mem
13

Frame
Buffer

7
Video

Output 8

Satellite Dish

Cable

remote

monitor

speakers

Test-bench

Base-band Processing
(Matlab,SPW)

Decoding Algorithms
(Matlab possibly coming from a library)

Transport Decode
Written in C

User Interface
Written in C

System Integration
Communication Protocol

From Alberto Sangiovanni-Vincentelli

52Kurt Keutzer & Richard Newton

IP-Based Design of Implementation

DSP RAMDSP RAM

ExternalExternal
I/OI/O

System System
RAMRAM

DSPDSP
ProcessorProcessor

 P
ro

ce
ss

or
 B

us
Pr

oc
es

so
r B

us

ControlControl
ProcessorProcessor

MPEGMPEG

PeripheralPeripheral

AudioAudio
DecodeDecode

Which DSP
Processor? C50?

Can DSP be done on
Micro-controller?

Which Bus? PI?
AMBA?

Dedicated Bus for
DSP?

Which
Micro-controller?

ARM? HC11?

Do I need a dedicated Audio Decoder?
Can decode be done on Micro-controller?

How fast will my
User Interface

Software run? How
Much can I fit on my

Micro-controller?

Can I Buy
an MPEG2
Processor?

Which One?

From Alberto Sangiovanni-Vincentelli

53Kurt Keutzer & Richard Newton

Separate Behavior from Architecture

FrontFront
End End 11

TransportTransport
Decode Decode 22

RateRate
BufferBuffer

1212

RateRate
BufferBuffer

99

RateRate
BufferBuffer

55

SensorSensor

SynchSynch
ControlControl

44

VideoVideo
Decode Decode 66

AudioAudio
Decode/Decode/

Output Output 1010

MemMem
1111

User/SysUser/Sys
ControlControl

33

MemMem
1313

FrameFrame
BufferBuffer

77

VideoVideo
Output Output 88

 System Behavior
l Functional Specification

of System.

l No notion of hardware or
software!

Implementation Architecture
l Hardware and Software

l Optimized Computer

DSP RAMDSP RAM

ExternalExternal
I/OI/O

System System
RAMRAM

DSPDSP
ProcessorProcessor

 P
ro

ce
ss

or
 B

us
Pr

oc
es

so
r B

us

ControlControl
ProcessorProcessor

MPEGMPEG

PeripheralPeripheral

AudioAudio
DecodeDecode

From Alberto Sangiovanni-Vincentelli

54Kurt Keutzer & Richard Newton

Map Between Behavior and Architecture

FrontFront
End End 11

TransportTransport
Decode Decode 22

RateRate
BufferBuffer

1212

RateRate
BufferBuffer

99

RateRate
BufferBuffer

55

SensorSensor

SynchSynch
ControlControl

44

VideoVideo
Decode Decode 66

AudioAudio
Decode/Decode/

Output Output 1010

MemMem
1111

User/SysUser/Sys
ControlControl

33

MemMem
1313

FrameFrame
BufferBuffer

77

VideoVideo
Output Output 88

Audio Decode Behavior
Implemented on

Dedicated Hardware

Transport Decode Implemented
as Software Task Running

on Micro-controller

DSP RAMDSP RAM

ExternalExternal
I/OI/O

System System
RAMRAM

DSPDSP
ProcessorProcessor

 P
ro

ce
ss

or
 B

us
Pr

oc
es

so
r B

us

ControlControl
ProcessorProcessor

MPEGMPEG

PeripheralPeripheral

AudioAudio
DecodeDecode

Communication
Over Bus

From Alberto Sangiovanni-Vincentelli

55Kurt Keutzer & Richard Newton

Basic Principles

Design Methodology general enough to capture most of application domains

Existing methods should be modeled to allow transition

Powerful policies to allow fast development of complex systems with correctness
guarantees

Policies supported by verification and synthesis tools both at the abstract and at
the physical level

Constraint-based Approach to generate appropriate guiding principles for
Subsequent Implementation steps

Validation of ideas can only come by applying it to “real” designs

From Alberto Sangiovanni-Vincentelli

56Kurt Keutzer & Richard Newton

System Level Design

Design Methodology:
l Top Down Aspect:

l Formalization: precise unambiguous semantics
l Abstraction: capture the desired system details
l Decomposition: partitioning the system behavior into simpler

behaviors
l Successive Refinements: refine the abstraction level down to the

implementation by filling in details and passing constraints

l Bottom Up Aspect:
l IP Re-use (even at the algorithmic and functional level)
l Components of architecture from pre-existing library

From Alberto Sangiovanni-Vincentelli

57Kurt Keutzer & Richard Newton

System Design

Synthesis Verification

Architecture Function

Mapping

HW SW

From Alberto Sangiovanni-Vincentelli

58Kurt Keutzer & Richard Newton

Behavioral
 Function

Combines Behavioral Parameters and Architectural Models

HW
library

Network of
Modules

M
ap

pi
ng

Hardware Path

Model
Library

SW
library

Processor
Model

Co
de

G
en

er
at

io
n

Software Path

ARM8

Model
Library

Estimation and Modeling

From Alberto Sangiovanni-Vincentelli

59Kurt Keutzer & Richard Newton

Communication Refinement

Separate Function of blocks from inter-block
Communication

Substitute lower-level detail for communications
behavior

IP Block IP Block
Pr

ot
oc

ol
 D

ow
n

Co
nv

er
te

r

P
ro

to
co

l U
p

C
on

ve
rt

er

IP Block With
Generic Data

Transfer

IP Block With
Generic Data

Transfer

From Alberto Sangiovanni-Vincentelli

60Kurt Keutzer & Richard Newton

Communication Refinement

Standard interfaces constitute the backbone of an IP market: abstract form the concerns of
hardware implementation (multi-target VC), abstract from the concerns of a particular bus
(bus-independent VC)

system transaction, «ANY» data structure (e.g. video line)

hardware or software

«ANY BUS» operation (data, address...)
VSI-Alliance OCB Group.
Virtual Component Interface (VCI)

Physical Bus (e.g.
PIBus)
fixed bus-width,
detailed protocol

Bus Wrapper
Communication Interface (e.g.
bounded FIFO)

From Alberto Sangiovanni-Vincentelli

61Kurt Keutzer & Richard Newton

My System

CODEC SRAMuCntrlDSP A/D

nXn HPC IR Imager SINCGARS

GSM/PCS MPEG-4

GPS/IMU

IP Library

Crossbar

Normalizer

IP Integration

nXn HPC
DSP

RAM

IR Imager
CODEC

uCntrl

Normalizer

SINCGARS

A/D

Crossbar

R
A

M
B

U
S

P
C

I

Logic

Mechanical
Deployment

Inertial
Sensors

Mechanical
Pointing

Signal
Conditioning

Image
Formation

System ProcessorsWireless Control

Image Display

User Controls

4 mByte/sec

Position
Processing

ATR

Data Buffers

Data BuffersA/D
(20 x MHz+)

A/D
(9 x 1Khz)

D/A
(3 x 100 Hz)

D/A
(3 x 100 Hz)

Imager

Signal
Conditioning

Data Buffers

Data BuffersA/D
(20 x MHz+)

A/D
(9 x 1Khz)

D/A
(3 x 100 Hz)

D/A
(3 x 100 Hz)

Imager

Hi, I talk
PCI and

Hippi

Hi, I talk
PCI and

Hippi

Hello, I talk
Myrinet
and PCI

Hello, I talk
Myrinet
and PCI

OK, Lets
talk PCI

Integrated Sensor System

62Kurt Keutzer & Richard Newton

Challenges in Component-based Design

What is a component - what is the right quanta/granularity of capability?

Design

• How are components described?

• How are they modeled?

Implementation

• How do we trade-off between HW and SW implementations?

• In HW how do we trade off between soft, firm, and hard macros?

Verification

• How do we verify individual components?

• How do we verify component interfaces?

• How do we verify a family of parameterizable instances?

63Kurt Keutzer & Richard Newton

System-on-a-Chip IP Creation and
Analysis Flow

Chip Assembly
Block P&R

Memory Behavior
 Model

Memory Analog

Functional
DescriptionRTL

Logic
Synthesis

Logic Design
& Simulation

Logic
Verification

Core Cell
Sense Amp

Analog Functional
Model

Decoder/
Periphery Design

Analog Circuit
Design & Sim.

Final Power &
Reliability Check

Architectural Design

Performance
Optimization

Datapath
Compiler

Std Cell
P&R

Custom
Layout

Full Chip
Timing Verification

Full Chip
Func Simulation

DRC/LVS/Extraction
Parasitic Reduction

Digital Control Datapath

64Kurt Keutzer & Richard Newton

System-on-a-Chip Design Flow

Chip Assembly
Block P&R

Memory Behavior
 Model

Memory Analog

Functional
DescriptionRTL

Logic
Synthesis

Logic Design
& Simulation

Logic
Verification

Core Cell
Sense Amp

Analog Functional
Model

Decoder/
Periphery Design

Analog Circuit
Design & Sim.

Final Power &
Reliability Check

Architectural Design

Performance
Optimization

Datapath
Compiler

Std Cell
P&R

Custom
Layout

Full Chip
Timing Verification

Full Chip
Func Simulation

DRC/LVS/Extraction
Parasitic Reduction

Digital Control Datapath

Block
Timing/Power

Physical
Floorplan

Global
Timing/Power

Functional
Models

Static Timing
Models

65Kurt Keutzer & Richard Newton

System-on-a-Chip Integration Flow

Functional

Power

Physical

Manufacturing

Software

System
Physical
Floorplan

System
Hardware/Software

Partitioning

System Design
Planning

Sy
st

em
 A

bs
tr

ac
tio

n

Sy
st

em
 V

er
ifi

ca
tio

n

Te
st

N
oi

se

R
el

ia
bi

lit
y

Models

P
ow

er
 M

od
el

s

 T

im
in

g
M

od
el

s

 B

us
 F

un
ct

io
na

l M
od

el
s

Timing

66Kurt Keutzer & Richard Newton

ArchitectureInstruction
 Set

Testbench/Tests

Full Function Cycle

Bus Functional

Timing Model

Full-Function with Timing

Test Model

 Floorplan/Phy Model

Electrical Rule Model

SoC Model Views

Post-Design
Remodeling

Core Creation Core Views Integration

Place & Route
and

Chip Finishing

Core Design

Automatic
Model

Creation

S
of

tw
ar

e
D

es
ig

n

P
hy

si
ca

l D
es

ig
n

Ti
m

in
g

D
es

ig
n

Fu
nc

tio
na

l D
es

ig
n

M
an

uf
ac

tu
ri

ng
 D

es
ig

n

P
ow

er
 D

es
ig

n

67Kurt Keutzer & Richard Newton

Berkeley Wireless Research Center (BWRC)

Conventional cellular
phone solution

•Research into technology
and design methodologies
for CMOS single chip radios

•Exploring future applications
of wireless technology, 4th
generation and beyond

68Kurt Keutzer & Richard Newton

BWRC Long-Term Research Drivers

Universal Radios for 4th Generation
l Two generations beyond present digital cellular

l Low energy, high-performance programmable computing platform
l Systems and circuits focus to resolve rules of engagement at the air

interface and to allow for peaceful co-existence

Picoradios
l Ultra-low power, low cost, embedded CMOS radio’s (< 1 mW)
l EDA systems for rapid, optimized implementation

Ultra-High Bandwidth Millimeter Radios
l Scaled CMOS solutions for 20 - 60 GHz operation
l Architectures and Device modeling

69Kurt Keutzer & Richard Newton

Homework 1: JPEG as a Component

You are to evaluate/estimate one of a number of possible
implementations of the JPEG specification (description?)
provided on the course web page.

You will estimate, as accurately as you can and with as much
justification as you can:

l Frames/second

l Frames/mW

l Production cost of your solution

You may work in groups of one or two

Your results should be submitted online by Friday, 1/29, 5pm

We will compare results and assumptions in Week 3

70

Scenario 2 Implications: Power as the Driver

0.001

0.01

0.1

1

10

100

1000

Pentium StrongARM TI DSP Dedicated

M
IP

S/
m

W

0.35µm 0.35µm 0.25µm 1µm

Four orders
of magnitude

We believe power always has been the driver!

Source: R. Brodersen, Berkeley

71Kurt Keutzer & Richard Newton

Challenges in Component-based Design

What is a component - what is the right quanta/granularity of capability?

Design

• How are components described?

• How are they modeled?

Implementation

• How do we trade-off between HW and SW implementations?

• In HW how do we trade off between soft, firm, and hard macros?

Verification

• How do we verify individual components?

• How do we verify component interfaces?

• How do we verify a family of parameterizable instances?

