EE290 A: Advanced Topics in CAD Component Based Design of Electronic Systems Lecture 9.2

Professors Kurt Keutzer

Department of Electrical Engineering and Computer Sciences

University of California at Berkeley

Spring 1999

With contributions from Mike Keating and Prof. Ralph Ernst

1

Approaches to increase IP reuse

Who is motivated to increase IP reuse? Why do they do it? How do they do it?

Where Does IP Come From?

Utility of Reuse - Semiconductor

Easy integration is desirable for all segments

Semiconductor industry:

- Profits = margin_per_design X design_wins X volume_per_design
- High-value IP implies high margin per design
- currently cost of integrating a significant IP block (e.g. 32-bit risc microprocessor such as MIPS R4000) is quite high.
- Non-recurring engineering (NRE) cost limits volume size that can be accommodated within a particular program (>1M parts in many programs)
- Lower NRE costs lower the barriers to utilizing semiconductor IP. More design_wins means more volume. More volume means more profit.
- Semiconductor companies are also trying to glue customers into their fab

Utility of Reuse - 3rd party IP

Easy integration is desirable for all segments

3rd party IP:

- Profits = fixed_charge_per_design X design_wins + (royalty)
- royalty = royalty_per_design X design_volume
- Since principle source of revenue comes from fixed charges per design, 3rd party IP companies are more highly dependent on design wins than are semiconductor companies, thus they are even more motivated to make integration easy.
- Lower NRE costs lower the barriers to utilizing 3rd party IP. More design_wins means more fixed charges. More charges, more profit.

Utility of Reuse - Customer designs

Easy integration is desirable for all segments

Customer designs:

- Focus is on reducing NRE costs for design an integrated circuit
- Lower NRE costs lower the barriers to utilizing 3rd party and semiconductor IP and reduces overall design cost
- In addition, while semiconductor companies wish to use highvalue IP (e.g. TMS320CXX) to tie end customers to a fab. End customers, on the other hand, desire NOT to be tied to a particular semiconductor fabrication facility. Variety of IP designs as well as variety of access is desirable.

Summary of Motivation

Across the board, the market forces motivate:

- Providing a wide variety of intellectual property blocks
- In a manner that makes it easy to integrate the IP blocks

OK, so how do we do it?

Technical Challenges to Integration

Verification

- Functionality
- Electrical correctness
- Testability

Performance parameters

- Timing
- Power
- Area

How the integration challenge is faced

Semiconductor company

- Motorola CSIC program MC68332
- LSI Logic Coreware program
- (TI cDSP custom DSP Program)
- **3rd party IP provider**
 - (Inventra)
 - Tensilica Xtensa Processor
 - Synopsys 8051
 - Sonics (auxillary slides)
- **End Customer**
 - Reuse methodology consulting

Third Party IP Suppliers

The tensilica solution:

Imagine the possibilities.....

Prototype and Emulation Support

Standard EDA tools are supported

Function	EDA Tool Support
Logic Synthesis	Synopsys, Ambit
Logic Simulation	Verilog XL/NC, VCS, MTI, Vantage
Timing Analysis	MOTIVE, Primetime, PEARL
Floorplanner	HLD
Place/Route	Si Ensemble, Apollo, Aquarius
LVS/DRC	DRACULA

DW8051 : The Complete Solution

Creation

Design for Reuse

General Solution

parameterized for various applications
 Meets quality goals in multiple technologies
 Designed to simulate with common commercial simulators (Verilog and VHDL)

Fully Verified

- reuse requires higher confidence levels 99%
- complete test bench for system integration

Requires best design practices Requires generalized solutions Verification of parameterized designs is hard Optimal, generalized synthesis is hard Requires

- discipline
- processes
- tools
- additional effort and time
- management buy-in that value >> cost

High Quality Documentation

Synopsys

1st Generation

Block Diagrams Functional Specification Description of parameters Interface signal description Timing diagrams/req'ments Verification Strategy Synthesis Constraints

1st Thru nth Generation Project it was used on Personnel on the project **Verification Report Technology used** Tools (w/version) used **Actual Timing/Area Results Revision history for any** modifications

Example of Poor Partitioning

Synopsys

Separate Application-Specific Logic from Reusable Sections

App-Specific Glue Logic

Example of Good Partitioning

Synopsys

Consistent Coding Guidelines are Key

Signal Naming Conventions Blocking vs Non-blocking ops Signals vs variables (VHDL) Sync vs Async resets **Copyright banners Change history** Indentation **Begin/End closure Commenting do's/don'ts** Use of constants/defines **Design for test constructs** State machine coding **Technology portability**

Synopsys

4 of many ways to name active low signals. <u>Pick one!</u>

Verification is Key to Reuse

Synopsys

Code Coverage Reports

Synopsys

3720	390	begin
	391	$if(reset_n = '0')$ then
	392	AD bus
400	393	<pre>int_ifc_ad <= (others => '0');</pre>
	394	
	395	C_BE bus
400	396	int_ifc_c_be <= (others => '0');
	397	
	398	PAR bus
400	399	int_ifc_par <= '0';
400	400	int_ifc_par64 <= '0';
	401 🔨	elsif (clk = '1' and clk'EVENT) then
	402	AD bus
	403	$if(i2p_ad_ld = '1')$ then
268	404 Lino Nu	int_ifc_ad <= i2p_ad;
	405 LINC INC	else
1349	406	int_ifc_ad <= int_ifc_ad;
▶	407	end if;
\ \	408	
"LI ;+"	409	C_BE bus
пц	410	$if(ism_cbe_ld = '1')$ then
276	411	int_ifc_c_be <= ini_c_be;
	412	else
1341	413	int_ifc_c_be <= int_ifc_c_be;
	414	end if;

DesignWare[™] Development Lifecycle

Verification Phase Activities

Synopsys

Semiconductor Companies

Architectures for Higher Computation Requirements

Example: Motorola MC 683xx - family of controllers

Processor: CPU 32

- 68000 processor enhanced by most of the 68030 features
- CISC processor: code density
- pipelining
- standard register sets (not in RAM)
 context switch is more expensive
- virtual memory

aims at use of operating systems

- supervisor and user modes
- table lookup instructions for compressed tables with built-in linear interpolation
 data density is concern

http://motorola.com/SPS/MCU/lit/manuals/332um/outline1.html

control dominated systems

Source: Prof. Rolf Ernst

Designed for automotive applications with mixture of computation intensive tasks and complex I/0 -functions

Idea: off-load CPU from frequent I/0 interactions to make use of computation performance: TPU

control dominated systems

Source: Prof. Roff Ernst

- independent programmable timer channels: single-shot "capture & compare"
- channel coupling and sequence control with control processor

TPU: time processing unit: peripheral coprocessor

control dominated systems

Source: Prof. Rofe Ernst

http://www.lsil.com/products/unit5_5.html

		Fre	Juliu ra	miy	
A Sample of LSI Logic's CoreWare Core Availability	300K	500K	60XK	GI0™	GII™
TinyRISC 16/32-bit Embedded TR4101 CPU				A	
TinyRISC 16/32-bit Embedded TR4102 C PU Embedded in Easy MACRO (EZ4102)					Р
MiniRISC 32-bit Superscalar Embedded CW 4003 CPU				Α	
MiniRISC 32-bit Superscalar Embedded CW 4011 CPU				A	
MiniRISC 64-bit Embedded CW40XX CPU				Р	Р
OakDSPCore CPU 16-bit Fixed-Point CWDSP1640		Α			
OakDSPCore CPU 16-bit Fixed-Point CWDSP1650				A	
GigaBlaze Transceiver				Α	Р
Merlin Fibre Channel Protocol Controller		А		Р	
Viterbi Decoder		А			
Reed-Solomon Decoder		A(DBS)			
Ethemet-10 Controller (Incl. 8-wire TP-PMD), 10 Mbps	A		А		
MENDEC-10 Ethernet Manchester Encoder-Decoder, 10 Mbps			с		
Ethemet-I I0 MAC, 10/100 Mbps	A	Α	А		
SONET/SDH Interface (SSI) 155/5 I Mbps	A	А	А		
ARM7 Thumb Processor				A	
T I Framer			Α		Α
HDLC				Α	
Ethemet-110 Serdes, 10/100 Mbps	А	А	А		
Ethemet-110 100 BASE-X, 10/100 Mbps	A	А	А		
PHY-I10, Ethernet Auto Negotiation 10/1000 Mbps			Q2-98		
USB Function Core				Α	Q2-98
PCI-66 Flex Core™ Core				A	А
For a listing of additional cores, contact your local A = A vail	able C = C	Consult Mar	reting P	Planned	Technolos

For a listing of additional cores, contact your local A = Available C = Consult Marketing P = Planned Technolog LSI Logic sales representative.

Product Family

A Sample of Mixed Signal Cores	LCB500K	LCB60XK	GI0 Products	GII Product:
I-bit Slicer ADC 10 MSPS	*		1	
4-bit Low Power Flash DC 10 MSPS	4		4	
6-bit Flash ADC 60 MSPS	4			
6-bit Flash ADC 90 MSPS			1	
8-bit Flash ADC 40 MSPS	×		×	
10-bit Successive Approximation ADC 350 KSPS	*		4	
Triple 10-bit RGB Video DAC	×	1	1	×
10-bit Low Power DAC 10 MSPS	*		4	
10-bit Low Power Multiple Output DAC	×		√	
Sample and Hold Output Stage for 10-bit Low Power Multiple Output DAC	×		×	
Programmable Frequency Synthesizer 300 MHz	1		√	
SONET/ATM 155 MSPS PMD Transceiver	*			
155 and 207 MBPS High Speed Backplane Transceiver	×			
Ethernet 10BASE-T/A UI 4/6 Pin, 5 V		1		
Ethernet 100BASE-X Clock Generation/Data Recovery Function, 3 V		×		

Note: Most of the mixed signal cores listed above will be ported to the G11 product family. Contact your local sales representative for schedule information.

OakDSPCore CWDSP1650

ARM Core7 Thumb Embedded

ARM/LSI's Features to Ease Integration

- synthesizable version of the widely popular ARM7TDMI processor core
- "LSI Logic's RTL-level approach, implemented with the CoreWare design methodology, results in the fastest time-to-market for system-level ASICs in the industry. "
- "LSI Logic's ARM cores are also supported with a rich set of peripherals easing the implementation of a complete CPU subsystem in a large system-level ASIC. This peripheral library, including complex peripherals like SDRAM controllers, is constructed around the open AMBA standard facilitating IP reuse."
- "These building blocks have been designed to facilitate customization to specific requirements."

ARM's Amba open standard

Advanced System Bus, (ASB) - high performance, CPU, DMA, external Advanced Peripheral Bus, (APB) - low speed, low power, parallel I/O, UART's External interface

http://www.arm.com/Documentation/Overviews/AMBA_Intro/#intro

More Features to Ease Integration

- LSI Logic's ARM cores are supported with the ARM software development toolkit.
- This integrated development environment, available on multiple hosts, comes with the full ARM compiler suite and complete debugging environment including
- the ARMulator, cycle accurate instruction set simulator, which supports simulation in an off-line mode or can be connected via a JTAG port to the target application for real time debugging even in large, complex ASICs.

Even more Features to Ease Integration

The development software is complemented with the standard PID7T H/W evaluation board provided by ARM or LSI Logic's AMCU development board which features a highly integrated MCU show casing the peripherals available in the library.

End Customer Integration

Who will "manage" your Internal IP?

An effective strategy requires some degree of internal coordination Some possibilities:

• R&D group

- CAD group
- Document Control group
- Quality group

Organizing for Reuse-Based Design

IP Repository -Heart of the EcoSystem Infrastructure

Summary

All segments are motivated to increase design reuse

- 3rd party IP supplier
- Semiconductor
- End system customer

Approaches to increasing reuse

- Increasing breadth of capability
- Increasing ease of integration
 - easy to verify function
 - easy to verify timing
 - easy to verify electrically
- generally, easy to integrate in tool flow