Retiming

R. K. Brayton, K. Keutzer, & S. Seshia
UC Berkeley

N. Shenoy, Synopsys
Thanks to A. Kuehimann, UCB

RTL Design Flow

Library

Logic Optimization

* Perform a variety of
transformations and
optimizations = .
logic

— Combinational Library [<—=| optimization
transformations |
* Technology independent
* Technology dependent
— Sequential transformations
* FSM state assignment

« Retiming i I i I

smaller, faster
pre-optimized less power

Logic Optimization Problem

Combinational outputs
Logic

What about the Registers?

Pure combinational optimization can be suboptimal since
relations across register boundaries are disregarded
Optimize a sequential circuit by optimally placing registers.
Move register(s) so that

— clock cycle decreases, or number of registers decreases and

— input-output behavior is preserved
Also, can combine retiming with combinational optimization
techniques

— Move latches out of the way temporarily

— optimize larger blocks of combinational

Lecture Outline

* Why is retiming important?
» Basic Model and Algorithms

» Combining with Combinational
Optimization

Retiming - tradeoffs

clock period=6 5 4 2
#registers=4 4 3 4

Retiming - Introduction

* Move registers

+ Goals
— clock period (min-period retiming)
— number of registers (min-area retiming)

— number of registers for a target clock period
(constrained min-area retiming)

clock period=6 5 4 2
registers=4 4 3 4

Importance of Retiming

Practical sequential optimization

Global optimality for clock period and register
positioning

Must for HDL synthesis

— lowers dependency on user description

Low power strategy
— decrease #registers with no loss in performance

Practical Importance of
Retiming

M area
M area-ret

delay

M delay-ret

Retiming - Problem Definition

+ Circuit == graph V= setof gates

E = set of edges
— <«=p Vertex
HEs d(v) — delay of gate (vertex), d(v) =20

— wire «=> edge w(e) — # of registers on edge e, w(e) >0
— environment «=> host vertex and host edges

Circuit Representation

Example: Correlator

Circuit Operation | delay

3(x, y) = 1 if x=y 8 3
0 otherwise - 7

Every cycle in Graph has at least one register i.e.
no combinational loops.

Preliminaries

* For apathp:V,—>
k
d(p)=Y_d(v,) (includes endpoints)

i=0

k-1
w(p) = z w(e,)
i=0

» Clock cycle Path with

(0]
c= max {d(p)} @/;L 0 w(p)=0
pw(p)=0 \
2 T@

For correlator ¢ = 13

Basic Operation

Movement of registers from input to output of a
gate or vice versa

Retime by -1

10 = =0t

Retime by 1

» Does not affect gate functionalities

« A mathematical formulation: Retardation
—r: V> Z, an integer vertex labeling
— w,(e) =w(e) + r(v) - r(u) for edge e= (u,v)

Basic Operation

* Thus in the example, r(u) = -1, r(v) = -1 results in
0 0
@/ CN 2 @<C1E>u\
B UT’é ' T’é

* For a path p: s—t, W,(p) = w(p) + r(t) - r(s)
* Retiming

— r: VoZ, an integer vertex labeling

— w,(e) =w(e) + r(v) - r(u) for edge e= (u,v)

— Aretiming r is legal if w,(e) >0, VeeE

Retiming - Assumptions

Each loop in circuit contains at least one register
Circuit uses single clock and edge-triggered
elements (identical skew)

Gate delay is constant (and non-negative)
Registers are ideal (set-up, drive independent of
load)

Any power-up state of the design can be safely
handled by the environment (initial state
assumption)

Retiming - Formulation

+ Assign integers to each vertex so that objective
is met

« Valid retiming constraints

o0 | 00

w,(e) =w(e) +r(b) - r(a) >0 w, (p) = w(p) + r(b) - r(a)

Retiming for Minimum Clock Cycle

— Problem Statement: (Minimum cycle time)
— Given G(V, E, d, w), find a Legal retiming r so that
¢ = max {d A
‘max {d(p)} (A)
is minimized
— 2 important matrices
* Register weight matrix
W (u,v) =min{w(p): u—L—>v}
+ Delay matrix
D(u,v)=max{d(p):u—L—v,w(p)=W (u,v)}
D(u,y)>c=>W(u,v)>1 ()

Retiming for Minimum Clock Cycle

W - register path weight matrix,
min # of registers on all paths
between u and v

D — path delay matrix, max delay
among all paths between u and v
with W(u,v) registers

o N
o N
O N

0000
N R
N O

[N

C<a& Vp,ifd(p) > athen w(p) > 1
i.e. for the clock cycle to be less than o there must be
a latch in the path

Conditions for Retiming

Suppose we need to check if a retiming exists for a clock cycle a
Legal retiming: w,(e) > 0 for all e. Hence
w,(e) =w(e) + r(v) -r(u) >0 or
r(u)-r(v)<w (e)
For all paths p: u — v such that d(p) = a, we require w,(p) > 1
— Thus

k=1
1<w (p)= z ACH

i=0

k-1
= z [wee)+r(v,,)—rv,)]
i=0
=w(p)+r(v,)—r(v,)
=w(p)+r(v)—ru)

Or take the least w(p) (tightest constraint) r(u)-r(v) < W(u,v)-1
i.e. there are many paths p, choose the p that gives tightest constraint

Note: we just need to apply it to (u, v) such that D(u,v) > a

Solving the Constraints

« All constraints in “difference of 2 variables” form
« How to solve?

3

<
o
<
-
<
N
<
w

D»>7:

Legal: r(u)-r(v)<w(e) r(u)-r(v)<W(u,v)-1
r(vy)—r(v,)<2 r(vy)—r(v;) <1
r(v))—r(v,)<0 r(v)—r(v,)<-1
r(v))—r(v;)<0 r(v))—r(v;) < -1
r(vy)—r(v;) <0 r(vy)—r(v,) <-1
r(vy)—r(v,) <0 r(v,)—r(v,) <1

r(vy)—r(v;) <-1
r(vy)—r(v) <l
r(vy)—r(v,) <1

NN O RN
NOON
OOON

Solving the Constraints

+ Do shortest path on constraint graph
— Bellman Ford Algorithm, O(|V|3)

+ A solution exists if and only if there exists no negative weighted

cycle.

D>7:
r(u)-r(v)sW(u,v)-1
r(vy)—r(v;) <1
r(v)—r(v,)<-1
r(v)—r(v;)<-1
r(v,)—r(v,) <-1
r(vy)—r(y,) <1
r(vy)—r(v;) <-1
r(vy)—r(v) <1
r(vy)—r(v,) <1

Legal: r(u)-r(v)<w(e)
r(vy)—r(v) <2
r(v)—r(»,) <0
r(v)—r(v;)<0
r(v,)—r(v;) <0
r(v;)—r(v,) <0

A solution is r(vg) = r(v;) = 0, r(v,) = r(v,) = -1

11

Retiming

To find the minimum cycle time, do a binary search among
the entries of the D matrix 0(| V|3log|V])

NN O R
NOORN

Retimed correlator:

- I Rehme

Clock cycle

= 3+3+7=13 Clock cycle = 7

Retiming

To find the minimum cycle time, do a/oinary search among the
entries of the D matrix 1)(|V|3I:>g|V|)

(0]

(=]
<

N YO KN
MNOON

0000
OOON

Retimed correlator:

- I Re'rlme

Clock cycle

= 3+3+7=13 Clock cycle = 7

Retiming

Previous algorithm has drawbacks
— Require W/D matrix computation

— O(|V|?) clock period constraints most of which
are redundant

— Average case is worst case

FEAS algorithm for clock period ¢
Repeat |V|-1 times {
Compute edge weights of retimed graph G,
YweG,Ip:u—>..—>v,duy)>cr(v)++

It 250 UP) > € then FAIL, else SUCCESS
FEAS solves the constraints implicitly!
Run-time: O(|V| [E|)

Retiming with FEAS

« W/D matrices not needed

— use binary search between current clock
period and the largest infeasible clock period
instead

» Detecting failure is expensive in FEAS

— On success, often see quick convergence and
can terminate loop

Retiming - performance

* Predecessor heuristic - detect infeasibility
(cheaply and early)

Retiming - performance

» Solve retiming for the loop
— much smaller size than original graph
— loop infeasible = no retiming at ¢
— loop feasible = no conclusion

o/ o

.
.
5
.
.
o
.
.
>

14

Retiming For Minimum Area at Fixed Clock
Period (“Constrained Min Area”)

Goal: minimize number of registers used

min N, —Zu (e)

= Z (wiley+r(v)—riu))

—211 f]+z (r{v)—r(u)
—"\.+z rlvy—riu))

=N +Z |;|{\ Wit fanin(v)—# fanout(v]|

=N+ Z agr(v)
= Other constraints
where a, is a constant. same as before

Solved by solving the dual linear program
+ A minimum cost circulation problem

Retiming - performance

« Constrained min-area retiming
— constraint generation

pi:wi, di

Effect: No constraint
Effect: No constraint
Effect: w, (p1) >1

15

Retiming For Minimum Area

* In practice

— We need W & D matrices to add clock
period edges

« Compute row of matrix at a time and avoid
redundant edges

— Use minimum cost scaling to solve
circulation problem
* Numeric precision needs big integers!

FSM Optimization: Combining
Combinational Optimization and
Retiming

Break cycles

16

FSM Optimization

Peripheral retiming

Resynthesize

L.

FSM Optimization

Retime

Reconnect

L

17

FSM Optimization

Original circuit

Resynthesized circuit

Retiming & Initial States

« Circuits come in two flavors
— Initial power-up then force set/reset
lines
* Retiming obeys delayed equivalence notion
— Initial state loaded using initializing
sequence

* Problem — same sequence might not work
for retimed ckt

18

Retiming in practice today

« Mostly used in pipelined datapath

» Verification technology needs to be
improved for greater acceptance

19

