
1

1

Equivalence Checking of
Sequential Circuits

Sanjit Seshia

EECS

UC Berkeley

With thanks to K. Keutzer, R. Rutenbar

S. Seshia 2

Today’s Lecture

• What we know:

– How to check two combinational circuits for
equivalence

• What we need:

– Checking equivalence of sequential circuits

– E.g., a circuit and its retimed version

• Today’s lecture is about using Boolean
function manipulation & BDDs for doing this

– Basics

– Sequential equivalence checking: the problem

– Algorithms

2

S. Seshia 3

Recap: Cofactors

A Boolean function F of n variables x1, x2, …, xn

F : {0,1}n ���� {0,1}

Cofactors of F:

Fx1
(x2, …, xn) = ?

Fx1’ (x2, …, xn) = ?

S. Seshia 4

Two Operations on Cofactors

Given: F(x1, …, xn)

Define

1. C(x2, …, xn) = Fx1
. Fx1’

2. S(x2, …, xn) = Fx1
+ Fx1’

What do C and S look like in terms of the
ON-sets of Fx1

and Fx1’ ?

“Consensus”

“Smoothing”

3

S. Seshia 5

Example

F(a,b,c) = ab + bc + ac

Fa = b + c

Fa’ = bc

C(b,c) = ?

S(b,c) = ?

S. Seshia 6

Quantification

• Consensus also called “universal
quantification”

– C(x2, …, xn) = Fx1
. Fx1’

= ∀∀∀∀ x1 F(x1, x2, …, xn) (“for all x1 …”)

• Smoothing also called “existential
quantification”

– S(x2, …, xn) = Fx1
+ Fx1’

= ∃∃∃∃ x1 F(x1, x2, …, xn) (“there exists x1 …”)

4

S. Seshia 7

Back to Equivalence Checking . . .

S. Seshia 8

Equivalence Checking: Simple Case

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

``specification’’

implementation

5

S. Seshia 9

Retimed circuits

a

b

s

q
0

1
d

clk

a

b

s

q
0

1
d

clk

Circuits are equivalent but it is not possible to show that
they are equivalent using Boolean equivalence

S. Seshia 10

Encoding Problems

Some logic specifications are
“symbolic” rather than binary-valued

e.g. specification for an ALU

Symbol Operation

ADD +

SUB -

XOR Exclusive-OR

INC Increment

Can assign any binary op code to the
symbolic values, so long as they are
different

6

S. Seshia 11

Different State Encodings

Circuit 1

Symbol Operation

ADD 00

SUB 01

XOR 10

INC 11

Circuit 2

Symbol
Operation

ADD 11

SUB 10

XOR 00

INC 01

Different state
encodings make
circuits no longer
amenable to
combinational
logic equivalence
checking

S. Seshia 12

Different Encodings

x

y

alu_out

clk2

32

32

clk

x

y

alu_out

clk2

32

32

clk

ALU ``ADD’’s on 00 ALU ``ADD’’s on 11

7

S. Seshia 13

A Fresh Look at Equivalence Checking

Given: Two sequential circuits, with same
inputs and outputs

– But state bits might differ

Let’s view this problem mathematically
(“formally”):

A combinational circuit is a Boolean function.

A sequential circuit is a ____________

S. Seshia 14

What’s in a Finite-State Machine (FSM) ?

FF

Output logic

Next State
logic

clk

inputs

Next state

outputs

?

8

S. Seshia 15

Finite-state machine (FSM) Equivalence

Equivalence checking problem:

Given: 2 FSMs, with same inputs/outputs

To check:

The output behavior of both machines is
identical

– over all time points, starting from a common
“initial” / “reset” state

– for every sequence of inputs

S. Seshia 16

Visualizing the Problem

FSM 1

FSM 2

=

inputs

clk

outputs

Always
1?

Q1. What goes inside the boxes?
Q2. How can we decide if the output is always 1?

9

S. Seshia 17

What goes in the boxes

From the finite-state machine description, we
write Boolean equations that describe

1. Next state as a function of present state &
inputs

2. Output as a function of present state &
inputs

• Most often this is how the system is most
easily described

S. Seshia 18

Example: FSM1

A/0 B/0

C/0 D/1

x=0

x=1

x=0

x=1

x=0,1

x=0,1

pq = 10

pq = 01pq = 00

pq = 11

Denote next state encoding
as p+q+ and output as z

p+(x, p, q) = ?

q+(x, p, q) = ?

z(x, p, q) = ?

pq

p’x’ + p’q

pq’ + p’x

10

S. Seshia 19

Example: FSM 2 (different state encoding)

A/0 B/0

C/0 D/1

x=0

x=1

x=0

x=1

x=0,1

x=0,1

abcd = 1000 Denote next state encoding
as a+b+c+d+ and output as z

a+(x, a, b, c, d) = ?

b+(x, a, b, c, d) = ?

c+(x, a, b, c, d) = ?

d+(x, a, b, c, d) = ?

z(x, a, b, c, d) = d

abcd = 0100

abcd = 0010
abcd = 0001

NOTE: We never start with
a state graph like the one
above – WHY?

S. Seshia 20

Back to the Problem

FSM 1

FSM 2

=

inputs

clk

outputs

Always
1?

p+ = pq’ + p’x

q+ = p’x’ + p’q

z = pq

a+ = d
b+ = ax’ + bx’
c+ = ax + c
d+ = bx
z = d

Q1. What goes inside the boxes? ����
Q2. How can we decide if the output is always 1?

11

S. Seshia 21

Rephrasing the Problem

Is the output always 1?

Can the output ever be 0?

Solved using “reachability analysis”

– Is there a state that the combined FSM can reach
such that the output is 0?

S. Seshia 22

Performing Reachability Analysis

3 Main ideas:

1. Represent sets as Boolean functions

• Use BDDs

2. Represent FSMs “symbolically”

• FSM = set of states and set of transitions

• FSM can be encoded using BDDs

3. Perform Symbolic Reachability Analysis

• Start in initial state

• Compute set of states reachable from initial state
in 1, 2, 3, … clock ticks

• This computation must terminate – WHY?

12

S. Seshia 23

1. Sets as Boolean functions

A Boolean function F of n variables x1, x2, …, xn

F : {0,1}n ���� {0,1}

can be represented as set

Similarly, for a set of size <= 2n, you can encode
each element as a string of <= n bits

• Each string can be viewed as a minterm

• View the set as the ON-SET of a Boolean function

Mapped to 0 Mapped to 1

S. Seshia 24

Set Operations as Boolean Operations

• A ∪∪∪∪ B = ?

• A ∩∩∩∩ B = ?

• A ⊂⊂⊂⊂ B = ?

• Is A empty?

13

S. Seshia 25

2. Symbolic Encoding of FSM

FSM is

• Set of states

– Each state is a minterm

– This is what we want to compute!

• Set of transitions

– To compute set of reachable states, we first need a
way of encoding transitions

– WHY NOT just enumerate all the states by
repeatedly evaluating equations, starting from an
initial state?

S. Seshia 26

Encoding Transitions

Define a new function, δδδδ, called the “transition
relation”

δ (current state s, input x, next state s+)

= 1 if we can go to s+ from s on x

= 0 otherwise

i.e. δδδδ encodes all legal transitions (“edges” in
the state graph)

14

S. Seshia 27

Example of δδδδ

A/0 B/0

C/0 D/1

x=0

x=1

x=0

x=1

x=0,1

x=0,1

pq = 10

pq = 01pq = 00

pq = 11

p+ = pq’ + p’x

q+ = p’x’ + p’q

z = pq

Denote next state encoding as
p+q+ and output as z

δδδδ((((p, q, x, p+, q+)

δδδδ((((0, 0, 0, 0, 1) = ?

δδδδ((((1, 1, 1, 1, 1) = ?

A/0 B/0
x=0

How to construct δδδδ?
• Pick an edge & encode it

• Add a term into the SOP for δδδδ
for that edge
δ = p’q’x’p’q + …

• There’s an easier way…

S. Seshia 28

3. Reachability Analysis

Given:

1. A minterm corresponding to initial state R0

2. δ

To find:

All states reachable from R0 in 1, 2, 3, … clock ticks

Strategy: Denote set of states reachable from R0 in k
(or less) clock ticks as Rk

• Express Rk as a function of Rk-1 and δδδδ and solve
recurrence relation

– Remember: Every set is represented as a Boolean
function (BDD)

15

S. Seshia 29

What’s the initial state?

A/0 B/0

C/0 D/1

x=0

x=1

x=0

x=1

x=0,1

x=0,1

pq = 10

pq = 01pq = 00

pq = 11

A/0 B/0

C/0 D/1

x=0

x=1

x=0

x=1

x=0,1

x=0,1

abcd = 1000 abcd = 0100

abcd = 0010
abcd = 0001

START

Start state for combined FSM is pqabcd = 001000 = R0

S. Seshia 30

Computing Rk, k >= 1

What’s the relation between Rk and Rk+1?

(think in terms of sets)

Rk+1
Rk s

s+
x

16

S. Seshia 31

Computing Rk, k >= 1

To get from Rk to Rk+1 there must be some triple
(s, x, s+) such that:

1. s ∈∈∈∈ Rk

2. s+ ∈∈∈∈ Rk+1

3. δ(s, x, s+) = 1

Rk+1
Rk s

s+
x

S. Seshia 32

Looking at it another way…

Suppose I gave you a s+ and asked you whether
it was in Rk+1, i.e.: Is Rk+1(s

+) = 1?

Can you phrase the answer to this question in
terms of Rk and δδδδ? (say in English)

Either
1. s+ is in Rk, i.e., Rk(s

+) = 1
Or
2.
There exist current state s and input x such that:
• Rk(s) = 1
• δδδδ(s, x, s+) = 1

17

S. Seshia 33

Writing out an equation for Rk+1

Rk+1(s
+) = Rk(s

+) + ∃ ∃ ∃ ∃ s, x { Rk(s) . δδδδ(s, x, s+) }

Either
1. s+ is in Rk, i.e., Rk(s

+) = 1
Or
2.
There exist current state s and input x such that:
• Rk(s) = 1
• δδδδ(s, x, s+) = 1

S. Seshia 34

Computing Rk

Start with R0

Repeatedly compute Rk+1 as:

Rk+1(s
+) = Rk(s

+) + ∃ ∃ ∃ ∃ s, x { Rk(s) . δδδδ(s, x, s+) }

Note: everything is represented as a Boolean
function

When do we stop?

18

S. Seshia 35

Termination

When Rk and Rk+1 are the same

Why is this guaranteed to happen?

Rk+1
Rk s

s+
x

S. Seshia 36

Recap of Reachability Analysis

1. Compute start state R0

2. Compute expression for δδδδ

3. Repeatedly compute Rk until termination
criterion is true

4. Resulting Rk for largest k is the set of all
states reachable from R0

19

S. Seshia 37

Sequential Equivalence Checking

1. Connect the two FSMs to form combined
FSM

2. Compute combined start state R0

3. Compute expression for δδδδ

4. Repeatedly compute Rk until termination
criterion is true

5. Resulting Rk for largest k is the set of all
states reachable from R0

6. Check if any of these states can generate
output 0 (showing that the two FSM outputs
are different)

S. Seshia 38

Summary

• Sequential equivalence checking can be done
using FSM reachability analysis

• In practice, very computationally intensive

– Memory intensive: BDDs can grow quite big

• Currently limited to a few hundred state bits

• Scaling this up is an active area of research

– New techniques based on SAT solving are available

