Equivalence Checking of Sequential Circuits

Sanjit Seshia EECS UC Berkeley

With thanks to K. Keutzer, R. Rutenbar

1

Today's Lecture

- · What we know:
 - How to check two combinational circuits for equivalence
- What we need:
 - Checking equivalence of sequential circuits
 - E.g., a circuit and its retimed version
- Today's lecture is about using Boolean function manipulation & BDDs for doing this
 - Basics
 - Sequential equivalence checking: the problem
 - Algorithms

S. Seshia

Recap: Cofactors

A Boolean function F of n variables $x_1, x_2, ..., x_n$

$$F: \{0,1\}^n \to \{0,1\}$$

Cofactors of F:

$$F_{x_1}(x_2, ..., x_n) = ?$$

$$F_{x_1}$$
, $(x_2, ..., x_n) = ?$

S. Seshia

3

Two Operations on Cofactors

Given: $F(x_1, ..., x_n)$

Define

1.
$$C(x_2, ..., x_n) = F_{x_1} \cdot F_{x_1} \leftarrow \text{"Consensus"}$$

2.
$$S(x_2, ..., x_n) = F_{x_1} + F_{x_1}$$
 "Smoothing"

What do C and S look like in terms of the ON-sets of F_{x_1} and F_{x_1} ?

S Seshia

Example

$$F(a,b,c) = ab + bc + ac$$

$$F_a = b + c$$

$$F_{a'} = bc$$

$$C(b,c) = ?$$

$$S(b,c) = ?$$

S. Seshia

5

Quantification

Consensus also called "universal quantification"

$$-C(x_2, ..., x_n) = F_{x_1} . F_{x_1}$$

= $\forall x_1 F(x_1, x_2, ..., x_n)$ ("for all $x_1 ...$ ")

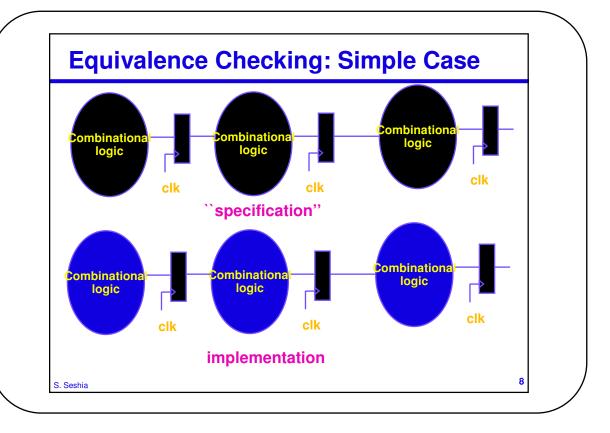
Smoothing also called "existential quantification"

$$-S(x_2, ..., x_n) = F_{x_1} + F_{x_1}$$

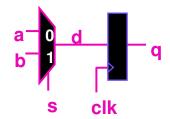
= $\exists x_1 F(x_1, x_2, ..., x_n)$ ("there exists $x_1 ...$ ")

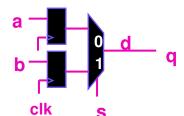
S Seshia

Back to Equivalence Checking . . .



Retimed circuits





Circuits are equivalent but it is not possible to show that they are equivalent using Boolean equivalence

S. Seshia

9

Encoding Problems

Some logic specifications are "symbolic" rather than binary-valued

e.g. specification for an ALU

Symbol Operation +

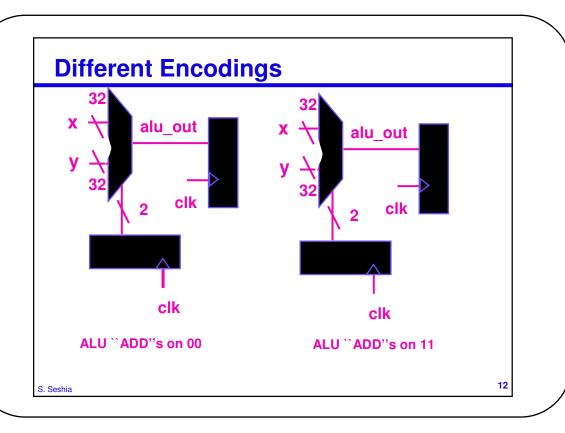
SUB -

XOR Exclusive-OR INC Increment

Can assign any binary op code to the symbolic values, so long as they are different

S Seshia

Different State Encodings			
Circuit 1 Symbol ADD SUB XOR INC Circuit 2 Symbol Operation	Operation 00 01 10 11	Different state encodings make circuits no longer amenable to combinational logic equivalence checking	
ADD	11		
SUB	10		
XOR	00		
S. Seshia	01		11



A Fresh Look at Equivalence Checking

Given: Two sequential circuits, with same inputs and outputs

- But state bits might differ

Let's view this problem mathematically ("formally"):

A combinational circuit is a Boolean function.

A sequential circuit is a _____

S. Seshia

13

What's in a Finite-State Machine (FSM)? Next State logic Next State logic output logic outputs s. Seshia

Finite-state machine (FSM) Equivalence

Equivalence checking problem:

Given: 2 FSMs, with same inputs/outputs

To check:

The output behavior of both machines is identical

- over all time points, starting from a common "initial" / "reset" state
- for every sequence of inputs

S. Seshia

15

FSM 1 Inputs Inputs

What goes in the boxes

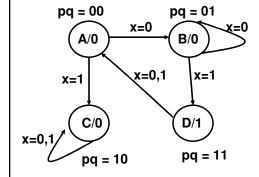
From the finite-state machine description, we write Boolean equations that describe

- 1. Next state as a function of present state & inputs
- 2. Output as a function of present state & inputs
- Most often this is how the system is most easily described

S. Seshia

17

Example: FSM1



Denote next state encoding as p+q+ and output as z

$$p^+(x, p, q) = ?$$

 $pq' + p'x$

$$q^+(x, p, q) = ?$$

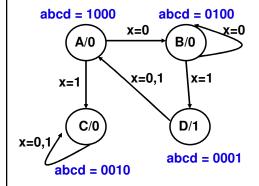
 $p'x' + p'q$

$$z(x, p, q) = ?$$

pq

S. Seshia

Example: FSM 2 (different state encoding)



Denote next state encoding as a+b+c+d+ and output as z

$$a^{+}(x, a, b, c, d) = ?$$

$$b^+(x, a, b, c, d) = ?$$

$$c^{+}(x, a, b, c, d) = ?$$

$$d^+(x, a, b, c, d) = ?$$

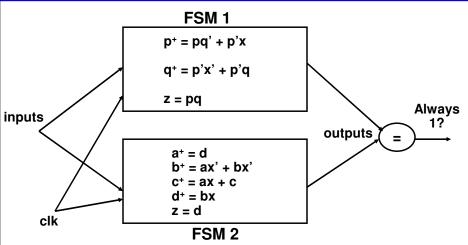
NOTE: We never start with a state graph like the one above – WHY?

z(x, a, b, c, d) = d

S. Seshia

19

Back to the Problem



Q1. What goes inside the boxes? ✓

Q2. How can we decide if the output is always 1?

S. Seshia

Rephrasing the Problem

Is the output always 1?

Can the output ever be 0?

Solved using "reachability analysis"

- Is there a state that the combined FSM can reach such that the output is 0?

S. Seshia

21

Performing Reachability Analysis

3 Main ideas:

- 1. Represent sets as Boolean functions
 - Use BDDs
- 2. Represent FSMs "symbolically"
 - FSM = set of states and set of transitions
 - FSM can be encoded using BDDs
- 3. Perform Symbolic Reachability Analysis
 - Start in initial state
 - Compute set of states reachable from initial state in 1, 2, 3, ... clock ticks
 - This computation must terminate WHY?

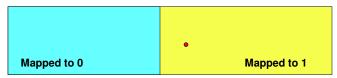
S. Seshia

1. Sets as Boolean functions

A Boolean function F of n variables x1, x2, ..., xn

 $F: \{0,1\}n \rightarrow \{0,1\}$

can be represented as set



Similarly, for a set of size <= 2ⁿ, you can encode each element as a string of <= n bits

- · Each string can be viewed as a minterm
- View the set as the ON-SET of a Boolean function

S. Seshia

23

Set Operations as Boolean Operations

- $A \cup B = ?$
- $A \cap B = ?$
- $A \subset B = ?$
- Is A empty?

S Seshia

2. Symbolic Encoding of FSM

FSM is

- Set of states
 - Each state is a minterm
 - This is what we want to compute!
- · Set of transitions
 - To compute set of reachable states, we first need a way of encoding transitions
 - WHY NOT just enumerate all the states by repeatedly evaluating equations, starting from an initial state?

S. Seshia

25

Encoding Transitions

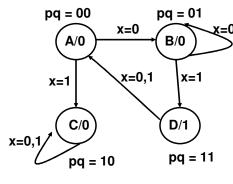
Define a new function, δ , called the "transition relation"

 δ (current state s, input x, next state s+)

- = 1 if we can go to s+ from s on x
- = 0 otherwise
- i.e. δ encodes all legal transitions ("edges" in the state graph)

S. Seshia

Example of δ



$$p^+ = pq' + p'x$$

$$q^+ = p'x' + p'q$$

$$z = pq$$

Denote next state encoding as p+q+ and output as z

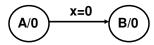
$$\delta(p,\,q,\,x,\,p^{\scriptscriptstyle +},\,q^{\scriptscriptstyle +})$$

$$\delta(0, 0, 0, 0, 1) = ?$$

$$\delta(1, 1, 1, 1, 1) = ?$$

How to construct δ ?

· Pick an edge & encode it



- Add a term into the SOP for δ for that edge
- $\delta = p'q'x'p'q + ...$
- There's an easier way...

27

3. Reachability Analysis

Given:

- 1. A minterm corresponding to initial state R₀
- 2. δ

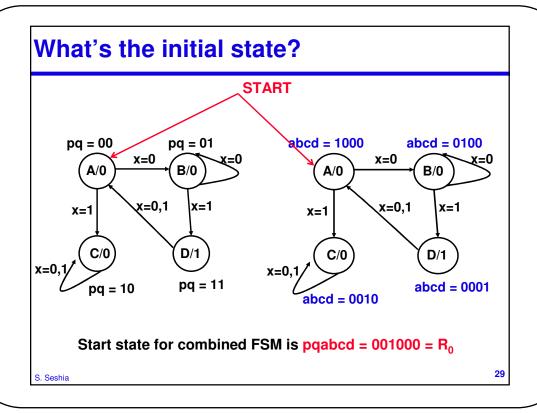
To find:

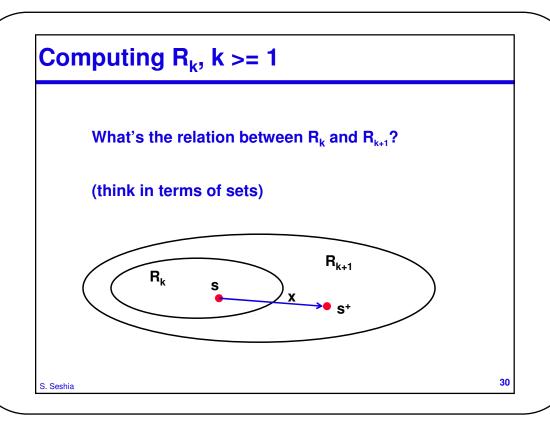
All states reachable from R_0 in 1, 2, 3, ... clock ticks

Strategy: Denote set of states reachable from \mathbf{R}_0 in \mathbf{k} (or less) clock ticks as $\mathbf{R}_{\mathbf{k}}$

- Express R_k as a function of R_{k-1} and δ and solve recurrence relation
 - Remember: Every set is represented as a Boolean function (BDD)

S. Seshia

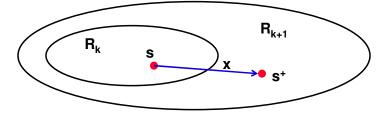




Computing R_k , $k \ge 1$

To get from R_k to R_{k+1} there must be some triple (s, x, s^+) such that:

- 1. $s \in R_k$
- 2. $s^+ \in R_{k+1}$
- 3. $\delta(s, x, s^+) = 1$



S Seshia

31

Looking at it another way...

Suppose I gave you a s⁺ and asked you whether it was in R_{k+1} , i.e.: Is $R_{k+1}(s^+) = 1$?

Can you phrase the answer to this question in terms of R_k and δ ? (say in English)

Either

1. s⁺ is in R_{k,} i.e., R_k(s⁺) = 1

There exist current state s and input x such that:

- $R_k(s) = 1$
- $\delta(s, x, s^+) = 1$

S. Seshia

Writing out an equation for R_{k+1}

$$R_{k+1}(s^+) = R_k(s^+) + \exists s, x \{ R_k(s) . \delta(s, x, s^+) \}$$

Either

1. s+ is in $R_{k,}$ i.e., $R_{k}(s+) = 1$

2

There exist current state s and input x such that:

- $R_k(s) = 1$
- $\delta(s, x, s^+) = 1$

S. Seshia

33

Computing R_k

Start with R₀

Repeatedly compute R_{k+1} as:

$$R_{k+1}(s^+) = R_k(s^+) + \exists s, x \{ R_k(s) . \delta(s, x, s^+) \}$$

Note: everything is represented as a Boolean function

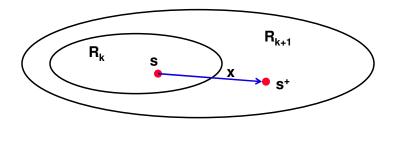
When do we stop?

S. Seshia

Termination

When R_k and R_{k+1} are the same

Why is this guaranteed to happen?



S. Seshia

35

Recap of Reachability Analysis

- 1. Compute start state R₀
- 2. Compute expression for δ
- 3. Repeatedly compute $R_{\rm k}$ until termination criterion is true
- 4. Resulting $\mathbf{R}_{\mathbf{k}}$ for largest k is the set of all states reachable from $\mathbf{R}_{\mathbf{0}}$

S. Seshia

Sequential Equivalence Checking

- 1. Connect the two FSMs to form combined FSM
- 2. Compute combined start state R₀
- 3. Compute expression for δ
- 4. Repeatedly compute R_k until termination criterion is true
- 5. Resulting R_k for largest k is the set of all states reachable from R_0
- 6. Check if any of these states can generate output 0 (showing that the two FSM outputs are different)

S. Seshia

37

Summary

- Sequential equivalence checking can be done using FSM reachability analysis
- In practice, very computationally intensive
 - Memory intensive: BDDs can grow quite big
- Currently limited to a few hundred state bits
- Scaling this up is an active area of research
 - New techniques based on SAT solving are available

S. Seshia