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Today’s Lecture

• What we know:

– How to check two combinational circuits for 
equivalence

• What we need:

– Checking equivalence of sequential circuits

– E.g., a circuit and its retimed version

• Today’s lecture is about using Boolean 
function manipulation & BDDs for doing this

– Basics

– Sequential equivalence checking: the problem

– Algorithms
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Recap: Cofactors

A Boolean function F of n variables x1, x2, …, xn

F : {0,1}n ���� {0,1}

Cofactors of F:

Fx1 
(x2, …, xn)  =  ?

Fx1’ (x2, …, xn) = ?
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Two Operations on Cofactors

Given: F(x1, …, xn) 

Define 

1. C(x2, …, xn)  =  Fx1
.  Fx1’

2. S(x2, …, xn)  =  Fx1
+  Fx1’

What do C and S look like in terms of the 
ON-sets of Fx1

and  Fx1’ ?

“Consensus”

“Smoothing”
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Example 

F(a,b,c) = ab + bc + ac

Fa = b + c

Fa’ = bc

C(b,c)  =  ?

S(b,c)  =  ?
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Quantification

• Consensus also called “universal 
quantification”

– C(x2, …, xn)  =  Fx1
.  Fx1’

= ∀∀∀∀ x1 F(x1, x2, …, xn)  (“for all x1 …”)

• Smoothing also called “existential 
quantification”

– S(x2, …, xn)  =  Fx1
+  Fx1’

= ∃∃∃∃ x1 F(x1, x2, …, xn) (“there exists x1 …”)
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Back to Equivalence Checking . . .
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Equivalence Checking: Simple Case

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

``specification’’

implementation
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Retimed circuits
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Circuits are equivalent but it is not possible to show that 
they are equivalent using Boolean equivalence
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Encoding Problems

Some logic specifications are 
“symbolic” rather than binary-valued

e.g.  specification for an ALU

Symbol Operation

ADD +

SUB -

XOR      Exclusive-OR

INC Increment

Can assign any binary op code to the 
symbolic values, so long as they are 
different
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Different State Encodings

Circuit 1

Symbol Operation

ADD 00

SUB 01

XOR 10

INC 11

Circuit 2

Symbol
Operation

ADD 11

SUB 10

XOR 00

INC 01

Different state 
encodings make 
circuits no longer 
amenable to 
combinational 
logic equivalence 
checking
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Different Encodings
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ALU ``ADD’’s on 00 ALU ``ADD’’s on 11
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A Fresh Look at Equivalence Checking

Given: Two sequential circuits, with same 
inputs and outputs

– But state bits might differ

Let’s view this problem mathematically 
(“formally”):

A combinational circuit is a Boolean function.

A sequential circuit is a ____________
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What’s in a Finite-State Machine (FSM) ?

FF

Output logic

Next State 
logic

clk

inputs

Next state

outputs

?
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Finite-state machine (FSM) Equivalence

Equivalence checking problem:

Given: 2 FSMs, with same inputs/outputs

To check: 

The output behavior of both machines is 
identical 

– over all time points, starting from a common 
“initial” / “reset” state

– for every sequence of inputs
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Visualizing the Problem

FSM 1

FSM 2

=

inputs

clk

outputs

Always 
1?

Q1. What goes inside the boxes?
Q2. How can we decide if the output is always 1?
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What goes in the boxes

From the finite-state machine description, we 
write Boolean equations that describe

1. Next state as a function of present state & 
inputs

2. Output as a function of present state & 
inputs

• Most often this is how the system is most 
easily described
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Example: FSM1

A/0 B/0

C/0 D/1

x=0

x=1

x=0

x=1

x=0,1

x=0,1

pq = 10

pq = 01pq = 00

pq = 11

Denote next state encoding 
as p+q+ and output as z

p+(x, p, q) =  ?

q+(x, p, q) =  ?

z(x, p, q) = ?

pq

p’x’ + p’q

pq’ + p’x
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Example: FSM 2 (different state encoding)

A/0 B/0

C/0 D/1

x=0

x=1

x=0

x=1

x=0,1

x=0,1

abcd = 1000 Denote next state encoding 
as a+b+c+d+ and output as z

a+(x, a, b, c, d) =  ?

b+(x, a, b, c, d) =  ?

c+(x, a, b, c, d) =  ?

d+(x, a, b, c, d) =  ?

z(x, a, b, c, d) = d

abcd = 0100

abcd = 0010
abcd = 0001

NOTE: We never start with 
a  state graph like the one 
above – WHY?
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Back to the Problem

FSM 1

FSM 2

=

inputs

clk

outputs

Always 
1?

p+ = pq’ + p’x

q+ = p’x’ + p’q

z = pq

a+ = d
b+ = ax’ + bx’
c+ = ax + c
d+ = bx
z = d

Q1. What goes inside the boxes? ����
Q2. How can we decide if the output is always 1?
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Rephrasing the Problem

Is the output always 1?

Can the output ever be 0?

Solved using “reachability analysis”

– Is there a state that the combined FSM can reach 
such that the output is 0?
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Performing Reachability Analysis

3 Main ideas:

1. Represent sets as Boolean functions

• Use BDDs

2. Represent FSMs “symbolically”

• FSM = set of states and set of transitions

• FSM can be encoded using BDDs

3. Perform Symbolic Reachability Analysis

• Start in initial state

• Compute set of states reachable from initial state 
in 1, 2, 3, … clock ticks

• This computation must terminate – WHY?
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1. Sets as Boolean functions

A Boolean function F of n variables x1, x2, …, xn

F : {0,1}n ���� {0,1}

can be represented as set

Similarly, for a set of size <= 2n, you can encode 
each element as a string of <= n bits

• Each string can be viewed as a minterm

• View the set as the ON-SET of a Boolean function

Mapped to 0 Mapped to 1
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Set Operations as Boolean Operations

• A ∪∪∪∪ B  = ?

• A ∩∩∩∩ B = ?

• A ⊂⊂⊂⊂ B = ?

• Is A empty?
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2. Symbolic Encoding of FSM

FSM is

• Set of states

– Each state is a minterm

– This is what we want to compute!

• Set of transitions

– To compute set of reachable states, we first need a 
way of encoding transitions

– WHY NOT just enumerate all the states by 
repeatedly evaluating equations, starting from an 
initial state?
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Encoding Transitions

Define a new function, δδδδ, called the “transition 
relation”

δ (current state s, input x, next state s+)

= 1  if  we can go to s+ from s on x

= 0  otherwise

i.e. δδδδ encodes all legal transitions (“edges” in 
the state graph)
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Example of δδδδ

A/0 B/0

C/0 D/1

x=0

x=1

x=0

x=1

x=0,1

x=0,1

pq = 10

pq = 01pq = 00

pq = 11

p+ = pq’ + p’x

q+ = p’x’ + p’q

z = pq

Denote next state encoding as 
p+q+ and output as z

δδδδ((((p, q, x, p+, q+) 

δδδδ((((0, 0, 0, 0, 1) = ?

δδδδ((((1, 1, 1, 1, 1) = ?

A/0 B/0
x=0

How to construct δδδδ?
• Pick an edge & encode it

• Add a term into the SOP for δδδδ
for that edge
δ = p’q’x’p’q + …

• There’s an easier way…
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3. Reachability Analysis

Given: 

1. A minterm corresponding to initial state R0

2. δ

To find: 

All states reachable from R0 in 1, 2, 3, … clock ticks

Strategy: Denote set of states reachable from R0 in k 
(or less) clock ticks as Rk

• Express Rk as a function of Rk-1 and δδδδ and solve 
recurrence relation

– Remember: Every set is represented as a Boolean 
function (BDD)
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What’s the initial state?

A/0 B/0

C/0 D/1

x=0

x=1

x=0

x=1

x=0,1

x=0,1

pq = 10

pq = 01pq = 00

pq = 11

A/0 B/0

C/0 D/1

x=0

x=1

x=0

x=1

x=0,1

x=0,1

abcd = 1000 abcd = 0100

abcd = 0010
abcd = 0001

START

Start state for combined FSM is pqabcd = 001000 = R0
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Computing Rk, k >= 1

What’s the relation between Rk and Rk+1?

(think in terms of sets)

Rk+1
Rk s

s+
x
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Computing Rk, k >= 1

To get from Rk to Rk+1 there must be some triple 
(s, x, s+) such that:

1. s ∈∈∈∈ Rk

2. s+ ∈∈∈∈ Rk+1

3. δ(s, x, s+) = 1

Rk+1
Rk s

s+
x
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Looking at it another way…

Suppose I gave you a s+ and asked you whether 
it was in Rk+1, i.e.: Is Rk+1(s

+) = 1?

Can you phrase the answer to this question in 
terms of Rk and δδδδ? (say in English)

Either
1. s+ is in Rk, i.e., Rk(s

+) = 1
Or
2.
There exist current state s and input x such that:
• Rk(s) = 1
• δδδδ(s, x, s+) = 1
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Writing out an equation for Rk+1

Rk+1(s
+) =    Rk(s

+)   +  ∃ ∃ ∃ ∃ s, x  {  Rk(s) .  δδδδ(s, x, s+) }

Either
1. s+ is in Rk, i.e., Rk(s

+) = 1
Or
2.
There exist current state s and input x such that:
• Rk(s) = 1
• δδδδ(s, x, s+) = 1
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Computing Rk

Start with R0

Repeatedly compute Rk+1 as:

Rk+1(s
+) =    Rk(s

+)   +  ∃ ∃ ∃ ∃ s, x  {  Rk(s) .  δδδδ(s, x, s+) }

Note: everything is represented as a Boolean 
function

When do we stop?
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Termination

When Rk and Rk+1 are the same

Why is this guaranteed to happen?

Rk+1
Rk s

s+
x
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Recap of Reachability Analysis

1. Compute start state R0

2. Compute expression for δδδδ

3. Repeatedly compute Rk until termination 
criterion is true

4. Resulting Rk for largest k is the set of all 
states reachable from R0
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Sequential Equivalence Checking

1. Connect the two FSMs to form combined 
FSM

2. Compute combined start state R0

3. Compute expression for δδδδ

4. Repeatedly compute Rk until termination 
criterion is true

5. Resulting Rk for largest k is the set of all 
states reachable from R0

6. Check if any of these states can generate 
output 0 (showing that the two FSM outputs 
are different)
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Summary

• Sequential equivalence checking can be done 
using FSM reachability analysis

• In practice, very computationally intensive

– Memory intensive: BDDs can grow quite big

• Currently limited to a few hundred state bits

• Scaling this up is an active area of research

– New techniques based on SAT solving are available


