
1

1

Design Verification

Mike Butts
Synopsys

Prof. Kurt Keutzer
EECS

UC Berkeley

Kurt Keutzer 2

Design Process

Design : specify and enter the design
intent

Implement:
refine the
design
through all
phases

Verify:
verify the
correctness of
design and
implementation

2

Kurt Keutzer 3

Design Verification

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

specification

Is the
design

consistent
with the original
specification?

Is what I think I want
what I really want?

Kurt Keutzer 4

Implementation Verification

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

Is the
implementation

consistent
with the original
design intent?

Is what I
implemented

what I
wanted?

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

3

Kurt Keutzer 5

Manufacture Verification (Test)

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

Is the
manufactured

circuit
consistent

with the
implemented

design?

Did they
build
what I

wanted?

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

Kurt Keutzer 6

Design Verification

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

specification

Is the
design

consistent
with the original
specification?

Is what I think I want
what I really want?

4

Kurt Keutzer 7

Verification is an Industry-Wide Issue

Intel: Processor project verification:
“Billions of generated vectors”
“Our VHDL regression tests take 27 days to run. ”

Sun: Sparc project verification:
Test suite ~1500 tests > 1 billion random simulation cycles

“A server ranch ~1200 SPARC CPUs”

Bull: Simulation including PwrPC 604
“Our simulations run at between 1-20 CPS.”
“We need 100-1000 cps.”

Cyrix : An x86 related project
“We need 50x Chronologic performance today.”
“170 CPUs running simulations continuously”

Kodak: “hundreds of 3-4 hour RTL functional simulations”
Xerox: “Simulation runtime occupies ~3 weeks of a design cycle”
Ross: 125 Million Vector Regression tests

Design Teams are Desperate for Faster SimulationDesign Teams are Desperate for Faster Simulation

Kurt Keutzer 8

The Verification Crisis

2002 PhysicalPhysical
ImplementationImplementation

DesignDesign
CreationCreation VerificationVerification

1995 VerificationVerification PhysicalPhysical
ImplementationImplementation

DesignDesign
CreationCreation

Verification Consumes Hardware Design CycleVerification Consumes Hardware Design Cycle

5

Kurt Keutzer 9

Productivity Gap

1

L
og

ic
 T

ra
ns

is
to

rs
 p

er
 C

hi
p

(K
)

Pr
od

uc
tiv

ity
T

ra
ns

./S
ta

ff
 -

M
o.

10

100

1,000

10,000

100,000

1,000,000

10,000,000

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000Logic Tr./Chip
Tr./S.M.

58%/Yr. compound
Complexity growth rate

21%/Yr. compound
Productivity growth rate

Source:
SEMATECH19

81

19
8 3

19
8 5

19
8 7

19
8 9

19
9 1

19
9 3

19
9 5

19
9 7

19
9 9

20
0 3

20
0 1

20
0 5

20
0 7

20
0 9

xx x
x x

x

x

2.5µ

.10µ

.35µ
Productivity Gap

Kurt Keutzer 10

Verification Gap

1

L
og

ic
 T

ra
ns

is
to

rs
 p

er
 C

hi
p

(K
)

Pr
od

uc
tiv

ity
T

ra
ns

./S
ta

ff
 -

M
o.

10

100

1,000

10,000

100,000

1,000,000

10,000,000

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000Logic Tr./Chip
Tr./S.M.

58%/Yr. compound
Complexity growth rate

21%/Yr. compound
Productivity growth rate

Source:
SEMATECH19

81

19
8 3

19
8 5

19
8 7

19
8 9

19
9 1

19
9 3

19
9 5

19
9 7

19
9 9

20
0 3

20
0 1

20
0 5

20
0 7

20
0 9

xx x
x x

x

x

2.5µ

.10µ

.35µ
Verification Gap

6

Kurt Keutzer 11

logic_transistors

chip
X

lines_in_design

logic_transistors

bugs

line_of_design
X

=
bugs

chip

Why the Gap?

Kurt Keutzer 12

logic_transistors

chip
X

lines_of_design

logic_transistors

bugs

lines_of_design
X

10,000,000 trs

chip
X

1

10

1

10,000
X

=
100 bugs

chip

Filling in Reasonable Numbers

7

Kurt Keutzer 13

logic_transistors

chip
X

lines_of_design

logic_transistors

bugs

lines_of_design
X

10,000,000 trs

chip
X

1

100

1

10,000
X

=
10 bugs

chip
this year!!

Raising the Level of Abstraction

Kurt Keutzer 14

logic_transistors

chip
X

lines_of_design

logic_transistors

bugs

lines_of_design
X

1,000,000,000 trs

chip
X

1

100

1

10,000
X

=
1000 bugs

chip

Moore’s Law Implies More Bugs

5 years!!

8

Kurt Keutzer 15

The Verification Bottleneck

Verification problem grows even faster due to the

combination of increased gate count and increased vector count

1990

1996

2002

1M

100M

10B

100k 10M1M

10
,0

00
x

m
or

e
Ve

ct
or

s
R

eq
ui

re
d

to
 V

al
id

at
e

100 x 10,000 =
1 million times
more Simulation Load

100x Gate Count

Kurt Keutzer 16

1 million instructions, assume 2 million cycles

Today’s verification choices:

50M cps: 40 msec Actual system HW

5M cps: 400 msec Logic emulator1 (QT Mercury)

500K cps: 4 sec Cycle-based gate accelerator1 (QT CoBALT)

50K cps: 40 sec Hybrid emulator/simulator2 (Axis)

5K cps: 7 min Event-driven gate accelerator2 (Ikos NSIM)

500 cps: 1.1 hr

50 cps: 11 hr CPU and logic in HDL simulator3 (VCS)

5 cps: 4.6 days

1: assumes CPU chip 2: assumes RTL CPU 3: assumes HDL CPU

Time to boot VxWorks M. Butts - Synopsys

9

Kurt Keutzer 17

Aspects of Design Verification

Initial Specification
Validation

Initial Specification
Validation

HDL Functional
Verification
(interactive)

HDL Functional
Verification
(interactive)

HDL Functional
Verification

(regressions)

HDL Functional
Verification

(regressions)

Implentatation In-System
Verification

Implentatation In-System
Verification

Kurt Keutzer 18

Phases of Design Verification

Time

B
ug

s
Fo

un
d

Basic Functionality Tapeout

Finding tough bugs is ad hoc & brute force
takes 80% of time, effort, & resources
represents most of the risk
is an unbounded problem

10

Kurt Keutzer 19

Software Simulation
– Application of simulation stimulus to model of circuit

Hardware Accelerated Simulation
– Use of special purpose hardware to accelerate

simulation of circuit
Emulation

– Emulate actual circuit behavior - e.g. using FPGA’s
Rapid prototyping

– Create a prototype of actual hardware
Formal verification

– Model checking - verify properties relative to model
– Theorem proving - prove theorems regarding

properties of a model

Technologies for Design Verification

Kurt Keutzer 20

Matching Problems and Technologies

Event Driven
– Interactive Phase
– High flexibility
– Quick turnaround time
– Good debug capabilities

Cycle-based simulation
– Regression Phase
– Highest performance
– Highest capacity

Emulation and Acceleration
– In-System Verification
– Highest performance
– Highest Capacity
– Real system environment

Emulation/
Rapid Protyping

Cycle-base
simulation

Specification
Validation

Specification
Validation

Functional
Verification
(interactive)

Functional
Verification
(interactive)

Implementation
Verification

Implementation
Verification

Functional
Verification

(regressions)

Functional
Verification

(regressions)

In-System
Verification
In-System

Verification

Equivalence Checking

Event-driven Simulation

11

Kurt Keutzer 21

Axis (Emulator) View

Kurt Keutzer 22

Software Simulation
– Application of simulation stimulus to model of circuit

Hardware Accelerated Simulation
– Use of special purpose hardware to accelerate

simulation of circuit
Emulation

– Emulate actual circuit behavior - e.g. using FPGA’s
Rapid prototyping

– Create a prototype of actual hardware
Formal verification

– Model checking - verify properties relative to model
– Theorem proving - prove theorems regarding

properties of a model

Approaches to Design Verification

12

Kurt Keutzer 23

Simulation: The Current Picture

Simulation
driver

Simulation
engine Monitors

SHORTCOMINGS:

• Hard to generate high quality input stimuli

– A lot of user effort
– No formal way to identify unexercised aspects

• No good measure of comprehensiveness of validation

– Low bug detection rate is the main criterion
• Only means that current method of stimulus generation

is not achieving more.

Kurt Keutzer 24

Simulation Drivers

Input stimuli consistent with circuit
interface must be generated

Environment of circuit must be represented faithfully

Tests can be generated

– pre-run (faster, hard to use/maintain)
– on-the-fly (better quality: can react to circuit state)

Environment and input generation programs written in
– HDL or C, C++, or
– Object-oriented simulation environment

• VERA, Verisity
Sometimes verification environment and test suite come with

product, e.g. PCI implementations, bridges, etc.

Simulation
driver

Simulation
engine Monitors

Symbolic
simulation

Coverage
analysis

Diagnosis of
unverified
portions

Vector
generation

13

Kurt Keutzer 25

Simulators

EVENT DRIVEN
• VCS
• Affirma
• Verilog-XL, ...
CYCLE-BASED
• Cyclone VHDL
• Cobra, ...
HYBRID
• VSS

Simulation
driver

Simulation
engine Monitors

Symbolic
simulation

Coverage
analysis

Diagnosis of
unverified
portions

Vector
generation

Kurt Keutzer 26

Monitors

Reference models (e.g. ISA model)
Temporal and snapshot “checkers”

Can be written in C, C++, HDLs, and
VERA and Verisity: A lot of flexibility
Assertions and monitors can be automatically generated: 0-in’s
checkers

Protocol specification can be given as
a set of monitors
a set of temporal logic formulas

(recent GSRC work)

Simulation
driver

Simulation
engine Monitors

Symbolic
simulation

Coverage
analysis

Diagnosis of
unverified
portions

Vector
generation

14

Kurt Keutzer 27

Types of software simulators

Circuit simulation
– Spice, Advice, Hspice
– Timemill + Ace, ADM

Event-driven gate/RTL/Behavioral simulation
– Verilog - VCS, NC-Verilog, Turbo-Verilog, Verilog-XL
– VHDL - VSS, MTI, Leapfrog

Cycle-based gate/RTL/Behavioral simulation
– Verilog - Frontline, Speedsim
– VHDL - Cyclone

Domain-specific simulation
– SPW, VCC, COSSAP,

Architecture-specific simulation

Kurt Keutzer 28

Event-driven simulation

Key elements:
– Circuit models and libraries

• cells
• interconnect

– Event-wheel
• Maintains schedules of events
• Enables sub-cycle timing

Advantages
– Timing accuracy
– Handles asynchronous

Disadvantage - performance and data management

15

Kurt Keutzer 29

Event versus cycle-based simulation

Combo
Logic

Q

QN

Ddata

clock

clock

clock
Q

QN

D

Q

QN

D

Event-Driven Simulator:
• Simulates Function
• Tracks event activities and timing

clock

data

Cycle Based Simulator:
• Simulates Function
• Accurate at Clock boundaries

data

Which approach is faster?

Kurt Keutzer 30

Software Simulation
– Application of simulation stimulus to model of circuit

Hardware Accelerated Simulation
– Use of special purpose hardware to accelerate

simulation of circuit
Emulation

– Emulate actual circuit behavior - e.g. using FPGA’s
Rapid prototyping

– Create a prototype of actual hardware
Formal verification

– Model checking - verify properties relative to model
– Theorem proving - prove theorems regarding

properties of a model

Approaches to Design Verification

16

Kurt Keutzer 31

Gate-level Event-driven Sim Acceleration

HW implementation of gate-level event-driven
algorithm

– Full timing, many states
– Exploits low-level parallelism (pipelining)

Design partitioned for high-level parallelism

– Limited: irregular topology, event
distribution

– Much work in the 1980’s: order 10X, not
100X

Performance

– 5G/eval * 100 MHz * 10 procs @ Max. 5B
eps

– “7-25X HDL simulator”, “500 to 5K cps”
(NSIM)

Usability

– Easy to use, quick compilation
– Full timing and states

Event Detector

Event Scheduler

Primitive Evaluators

Netlist Fanout

Event Detector

Event Scheduler

Primitive Evaluators

Netlist Fanout

E
vent Interconnect

M. Butts - Synopsys

Kurt Keutzer 32

Gate-level Event-driven Simulation Accelerator

Just one: Ikos NSIM

– 4-input table primitives, RTL
synthesis front-ends

– 8 to 64 processors, 0.5M to 15M
gates

Value

– Much faster than unaccelerated
simulators

– Not quite fast enough to run
much code on the design

Competition

– Modern compiled or cycle-based
SW on standard multi-processor
platforms

– Gate-level event-driven HW
accelerator usually isn’t enough
better

• Today’s GP multiprocessors
exploit low and high-level
parallelism

17

Kurt Keutzer 33

Software Simulation
– Application of simulation stimulus to model of circuit

Hardware Accelerated Simulation
– Use of special purpose hardware to accelerate

simulation of circuit
Emulation

– Emulate actual circuit behavior - e.g. using FPGA’s
Rapid prototyping

– Create a prototype of actual hardware
Formal verification

– Model checking - verify properties relative to model
– Theorem proving - prove theorems regarding

properties of a model

Approaches to Design Verification

Kurt Keutzer 34

FPGAs as logic evaluators

Today: 2 trillion gate evaluations per second per FPGA (200K gates, 10M cps)

– Growing with Moore’s Law as designs do
– $1.5B industry behind it (XLNX+ALTR+ACTL)

Potent tool for logic verification and validation

How best to put the FPGA to use?

M. Butts - Synopsys

18

Kurt Keutzer 35

Logic Emulation

Ultra-large “FPGA”
Live hardware, gate-for-gate.
Entire design or major module is

flattened, and compiled at
once into multi-FPGA form.

Logically static circuit-switched
interconnect.

In-circuit or vector-driven
Regular clock rate, > 1M cps.

M. Butts - Synopsys

Kurt Keutzer 36

Verification using Emulation

System Hardware
– Customized parallel

processor system for
emulating logic

– In-circuit target interface
Software Compiler

– Mapping RTL & Gate
designs to emulator

Runtime Software
– C-API
– Open SW architecture for

tight integration
– Flexible modes of stimulus

In-circuit Target Board

Compiler

RTL or Gate
design

Mapper

SBUS i/f

uP

Emulation Box

19

Kurt Keutzer 37

General Logic Emulation HW

Tens to hundreds of large FPGAs
Interconnect, either:

– Programmable crossbars
(QT), or

– Nearest-neighbor with time-
multiplexing (Ikos).

SRAMs for modeling memory
CPUs for behavioral simulation &
testbenches (QT Mercury)
Dedicated logic analyzer / pattern
generator for visibility & vectors
In-circuit cable plugs into target

FPGA

Logic Board

XBar

FPGA

XBar

FPGA

Logic Board

XBar

FPGA

XBar

Control
Computer

Network

XBarXBar

Logic Analyzer
Pattern Generator In-Circuit Cable

M. Butts - Synopsys

Kurt Keutzer 38

General Logic Emulation SW

Entire design is flattened
– Emulation-specific HDL synthesis

Clock tree timing analysis
– To avoid functional errors when

gated clocks get split across
FPGAs

Multi-level, multi-way partitioning
– NP-hard, very compute intensive

System placement (Ikos only)
Place & route for every FPGA

– Can be run in parallel
– Interdependent due to

interconnect
Design database system
Needs to be automatic and totally successful

Design Reader

HDL Synthesis

Tech Mapper
Clock Analysis

System Partitioner

Input
Design

D
A
T
A
B
A
S
E System Placer (if needed)

System Router

FPGA Place&RouteFPGA Place&RouteFPGA Place&Route

Binary Chip Programming Files

M. Butts - Synopsys

20

Kurt Keutzer 39

Cycle-based Emulator

Levelized compiled simulation in massively parallel hardware form

– All gates evaluate every cycle
– No run-time data dependencies, so processors and IPC network

are scheduled at compile time
Severe design constraints

– No asynchronous feedback, latches, etc.
– No timing: multiple related clock domains only by LCD slowdown
– Commonly OK for microprocessors, much less so in general

Compilation

– Given design constraints, relatively easy to use
– Fast: 2M gates per hour (CoBALT)

History

– IBM: Yorktown Simulation Engine, ET3 / Quickturn CoBALT
– Arkos=> Synopsys => Quickturn => Cadence

M. Butts - Synopsys

Kurt Keutzer 40

Cycle-based Emulator
Just one: Cadence/Quickturn CoBALT
IBM Poughkeepsie ET3 technology

– 500 MHz custom chip, compiler core
– Up to 20M ASIC gates:

• 128 3-input prims / processor
(CE, new CL: 2.5X)

• 64 processors per chip
• 64 chips per board, 8 boards

Performance
– 32 trillion gate evaluations /sec (max)

(2 gate equivalents / processor cycle *
64 processors/chip * 64 chips/board *
8 boards * 500 MHz)

– 10K to 500K cps in actual practice
Usage

– Vector memories or in-circuit cable
– PCI link to workstation simulator

M. Butts - Synopsys

21

Kurt Keutzer 41

Cycle-based Emulator
Much faster than SW or event-driven accelerator

Runs actual code and data, in actual target systems
Harder to use than SW or event-driven accelerator, but easier than emulator

Severe restrictions on design style

- Purely synchronous design OK, else No.
Expensive, complex, proprietary HW, SW

- Custom chips, interconnect, PCBs, connectors, chassis,
instrumentation

- Compiler is substantial effort to develop & maintain
Isolated from simulation, separate environment, proprietary simulator

Conclusion:

– Good solution for large fully synchronous projects that can afford
it

– Not a mainstream technology

M. Butts - Synopsys

Kurt Keutzer 42

State-of-art in CBE: Cobalt Ultra

• 112 Million ASIC gates
• 64 Gbytes Memory
• 4224 Bi-Directional I/O
• Compiles 4M ASIC gates/hour
• Performance up to 600KHz

22

Kurt Keutzer 43

Characteristics of Logic Emulation
Maximum Validation, fastest runtime speed

Runs actual code and data, in actual target systems
No restrictions on design style

- Gated clocks split across FPGAs may cause correctable functional errors
Expensive, complex, proprietary HW, SW

- Interconnect, PCBs, connectors, instrumentation; big FPGA tech. lag
- Compiler is hard to develop & maintain, user must be full-time expert

Inflexible

- Interconnect architecture makes FPGAs interdependent - changes often
cause long recompile

Isolated from simulation or integrated with proprietary simulator

It's HW speed, but not design speed; target HW slowdown required

FPGA logic capacity tracks Moore's Law...

But interconnect capacity does not track Moore's Law.

M. Butts - Synopsys

Kurt Keutzer 44

The Emulation Interconnect Problem

Rent's Rule (p = Kg r) applies to partitioned designs.

FPGA logic capacity: 2X / 1.5 yr (Moore's Law)

FPGA pins needed by emulator: 2X / 2.5 yr (Moore + Rent)

Package pins: 2X / 4 yr - Can't keep up.

Vendors are time-multiplexing pins more and more to compensate.

– But that’s only a linear effect; it does not change the doubling time.

1000

10000

100000

1000000

10000000

1990 1995 2000 2005 2010
100

1000

10000

100000

gates pinsPackage Pins

Pins needed
FPGA capacity FPGA capacity is emulation usage:

8 gates / 4-LUT+FF, 75% packing.

Pins needed is for emulation usage:
p = 2.75g 0.58

Package pins are Xilinx FPGA IOBs
(1991-2000, extrapolated afterwards).

M. Butts - Synopsys

23

Kurt Keutzer 45

Emulation Conclusions

Market is flat at $100M/year
Expensive HW, SW, cost of sales

– High-end supercomputer-like business
Current competition

– Simulation farms have similar $/cycle/sec for regression
vector sets

– FPGA-based rapid prototyping for validation, SW execution

Good solution for large projects that can afford it
Ultimately the basic concept is limited by IC packaging

M. Butts - Synopsys

Kurt Keutzer 46

Axis Reconfigurable Computing

24

Kurt Keutzer 47

The Traditional Problem:
Different environments create varying degrees of verification
gaps during the design flow

Verification
Environment

GAP
In-Circuit

System

Emulation

Multimedia
Set-Top Box

>10M

Emulator

When?

How?

Module
Level
Simulation

Adder +
Multiplier

5-10K

Block
Level
Simulation

ALU +
Sequencer

10-200K

Sub

System

Simulation

Digital
Filter +
uP

200-1000K

System

Simulation

MPEG
Video
Decoding

1-10M

Simulator

Accelerator

Kurt Keutzer 48

Axis Product Overview

1998 1999 2000 2001 2002

Hardware Platforms

Recently announced Xtreme-II & Mixed HDL

Capacity

Xcite 1000
Xcite 2000

Xtreme

Xtreme-II

Verilog

Mixed HDL

IP Builder Xpert

Verification Solutions
Xchange3rd Parties

25

Kurt Keutzer 49

Axis Product Characteristics

Xcite 1000 2M gate 100K cycle/sec
Xcite 2000 10M gate 200K cycle/sec
Xtreme 10M gate 500K cycle/sec
XtremeII 100M gate 1,000K c/sec

Kurt Keutzer 50

Axis Extreme Characteristics

1. Hardware Architecture
2. Design Format
3. Verilog Software Simulator: Xsim

4. Capacity
5. Simulation Performance
6. Emulation Performance
7. Memory
• Debugger Native Verilog interface.

Built-in Clock Generators
Supports up to 48 clock domains

• Programmable Trigger Generators
Supports up to 1024 probes per
trigger and up to 48 separate
trigger generators

1. Re-configurable computing engine
2. RTL and Gate Level
3. Native compiled with event look-

ahead. Supports all Verilog
constructs including PLI

4. Up to 20M gates
5. Up to 100K cycles/second
6. Up to 500K cycles/second
7. Up to 384M bits of on-board RCC

memory. Up to 18.75M bits of
internal cache. Expanding up to
4G of memory mapped
workstation memory

• All internal nodes visible. Real
time emulation/simulation state
swap between software and
hardware

26

Kurt Keutzer 51

Axis Xtreme

Kurt Keutzer 52

Software Simulation
– Application of simulation stimulus to model of circuit

Hardware Accelerated Simulation
– Use of special purpose hardware to accelerate

simulation of circuit
Emulation

– Emulate actual circuit behavior - e.g. using FPGA’s
Rapid prototyping

– Create a prototype of actual hardware
Formal verification

– Model checking - verify properties relative to model
– Theorem proving - prove theorems regarding

properties of a model

Approaches to Design Verification

27

Kurt Keutzer 53

Rapid System Prototyping Environment

Debug Environment

Aptix System Explorer™
MP3C or MP4

Aptix System Explorer™
Development Software

Sun, HP

Ethernet

Need lowNeed low--cost, instrumentcost, instrument--like system prototyping environmentlike system prototyping environment
Must be wellMust be well--integrated into overall componentintegrated into overall component--based flowbased flow

Kurt Keutzer 54

Rapid Prototyping of ASICs and SoCs

Target-specific tools

– ASIC/core+FPGA:
Philips/VLSI Velocity, ARM
($5K)

– FPGA+RAM: Altera/ARC
“SoC” board (100KG, $5K)

GP tool

– Aptix: daughtercards, prog.
breadboard, > $100K

Rapid Prototyping Characteristics

Real HW running at MHz,
low cost HW

- Isolated from simulation,
throwaway effort

M. Butts - Synopsys

28

Kurt Keutzer 55

Summary

Design Verification IS the biggest problem in IC design today
Verification teams ARE getting larger than design teams
No silver-bullet solutions on the horizon
Successful groups

– Intel, NVidia, IBM – use a bit of everything
– Leading adopters of new technology

Buying behaviors in software verification are poor
– All software solutions seen as ``simulators’’ – poor ASPs

Kurt Keutzer 56

Software Simulation
– Application of simulation stimulus to model of circuit

Hardware Accelerated Simulation
– Use of special purpose hardware to accelerate

simulation of circuit
Emulation

– Emulate actual circuit behavior - e.g. using FPGA’s
Rapid prototyping

– Create a prototype of actual hardware
Formal verification

– Model checking - verify properties relative to model
– Theorem proving - prove theorems regarding

properties of a model

Approaches to Design Verification

29

Kurt Keutzer 57

How to make it smarter: Intelligent Simulation

Simulation
driver

Simulation
engine Monitors

Symbolic
simulation

Coverage
analysis

Diagnosis of
unverified
portions

Vector
generation

Conventional

Novel

Kurt Keutzer 58

How to make it smarter: Intelligent Simulation

Simulation
driver

Simulation
engine Monitors

Symbolic
simulation

Coverage
analysis

Diagnosis of
unverified
portions

Vector
generation

Conventional

Novel

CLOSED FEEDBACK LOOP

30

Kurt Keutzer 59

Symbolic Simulation Simulation
driver

Simulation
engine Monitors

Symbolic
simulation

Coverage
analysis

Diagnosis of
unverified
portions

Vector
generation

IDEA: One symbolic run covers many
runs with concrete values.

Some inputs driven with symbols instead of concrete values
•2(# symbols) equivalent binary coverage

Kurt Keutzer 60

Coverage Analysis

Why?
• To quantify comprehensiveness

of validation effort
– Tells us when not to stop
– Even with completely formal methods, verification is only as

complete as the set of properties checked
• To identify aspects of design not adequately exercised

– Guides test/simulation vector generation
• Coordinate and compare verification efforts

– Different sets of simulation runs
– Different methods: Model checking, symbolic simulation, ...

Simulation
driver

Simulation
engine Monitors

Symbolic
simulation

Coverage
analysis

Diagnosis of
unverified
portions

Vector
generation

31

Kurt Keutzer 61

Vector Generation

Classification:
– Algorithmic methods

• Guided search of state-space
–Traverse “more relevant” portion

• Vector generation aimed at coverage
–Generate input stimuli to

– “Randomized” methods

Trade-off between
– Time to find “good” vectors
– Time to simulate vectors

Simulation
driver

Simulation
engine Monitors

Symbolic
simulation

Coverage
analysis

Diagnosis of
unverified
portions

Vector
generation

Find Simulate

0% 100%
Portion of Computation Time

Kurt Keutzer 62

Improved Time to Market: More Efficient
& Effective Verification

0-In extends the
value of simulation

with white-box
verification

0-In brings the
power of formal
verification to a

simulation-based
methodology

0-In Check

Standard Verilog
Simulator

Standard Verilog
Simulator 0-In View

InstrumentInstrument

SimulateSimulate

AmplifyAmplify

CheckerWare
Monitors

CheckerWare
Monitors

RTL with
0-In Directives

RTL with
0-In Directives

Verilog
0-In Checkers

Verilog
0-In Checkers

TestbenchTestbench

0-In Search

Standard
Waveform Tool

Standard
Waveform Tool

Structural
Coverage
Reports

Structural
Coverage
Reports

CheckerWare
Library

CheckerWare
Library

32

Kurt Keutzer 63

CheckerWare Library

Buses and
interfaces
• assert_window
• assert_follower
• assert_timer
• change_window
• change_timer
• outstanding_id
• req_ack

Data path
elements
• back_pressure
• data_used
• data_loaded
• fifo
• memory_access
• multi_clock_fifo
• stack

Control flow
elements
• arbiter
• case
• sequence
• scoreboard
• value
• state_transition
• timeout

0-In CheckerWare
(Examples)

SDRAM
DDR SDRAM

DDR2 SDRAM
DDR SRAM
QDR SRAM

LPC
PCI

PCI-X
AMBA

HyperTransport
InfiniBand

SPI-4
UTOPIA

POS-PHY
CSIX

CheckerWare Monitors
(Examples)

Unique capability increases adoption
rate

Reduces assertion specification
time
Eliminates protocol monitor
development time

A rich library of
assertion checkers for

complex logic

CheckerWare
Monitors deliver an

executable
specification

Kurt Keutzer 64

Solving the Critical Problems

Netlist
Functional

Checks

Basic
Properties

Complex
Properties &

Interface
Checkers

Protocol
Monitors and
Constraints

0-In
’s w

hit
e-b

ox
 te

ch
nolo

gy

deliv
ers

 va
lue f

rom
 th

e b
loc

k-l
ev

el

to th
e c

hip
-le

ve
l

Static
Checks

Basic
Assertions

CheckerWare
Library

CheckerWare
Monitors

systemcluster chipblock

33

Kurt Keutzer 65

0-In Check Makes Simulation More
Efficient

checker

Detects bugs earlier
when they are less

expensive

Reduces debugging
time

Reduces test
redundancy

Reduces reliance
on brute-force

methods

S
tim

ulus
S

tim
ulus

S
tim

ulus
S

tim
ulus

Functional
C

hecks
Functional

C
hecks

Functional
C

hecks
Functional

C
hecks

Black-Box Simulation

Simulation with Checkersbus
monitor
bus

monitor bus
monitor
bus

monitor

Kurt Keutzer 66

Mem
ory

ID
C

ount

Format

Arbiter

Format

Arbiter
ID

Count
ID

Tabl
e

I
D

Fo
rm

at
Fo

rm
at

Mem
ory

Structural Coverage

checker

S
tim

ulus
G

eneration
S

tim
ulus

G
eneration

R
esponse

C
hecking

R
esponse

C
heckingCoverage metric drives

methodology

Testbenches are
developed with
Specman, Vera,

C/C++, Superlog,
Verilog, etc.

S
tim

ulus
G

eneration
S

tim
ulus

G
eneration

R
esponse

C
hecking

R
esponse

C
hecking

validated

not validated

Structural Coverage is built into CheckerWare
– Effective method for testbench grading
– Implementation-specific

• Checkers capture structural characteristics of design
• Familiar RTL structures (memories, FIFOs, state machines, etc.)
• Checker-specific corner cases (FIFO full, FIFO empty, etc.)

– Objective and actionable
• Guide development of additional tests to plug verification holes

34

Kurt Keutzer 67

0-In Search Makes Simulation More Effective

checker
constraint 0-In Search

Stim
ulus

Stim
ulus

Functional
C

hecks
Functional

C
hecks

Black-Box Simulation

Reduces reliance
on manually-

written directed
tests

Finds bugs
simulation misses

Kurt Keutzer 68

Software Simulation
– Too slow
– Moving to higher levels is helping – but not enough

Hardware Accelerated Simulation
– Too expensive

Emulation
– Even more expensive

Rapid prototyping
– Too ad hoc

Formal verification
– Not robust enough

Intelligent Software Simulation
– Symbolic simulation – not robust enough
– Coverage metrics – useful, but not compehensive enough
– Automatic vector generation – not robust enough

Status of Design Verification

35

Kurt Keutzer 69

Symbolic Simulation

INNOLOGIC:
BDD-based symbolic Verilog simulators

ESP-XV: For processor and networking applications

ESP-CV: For memory verification and sequential
equivalence checking

Monitors can have symbolic expressions

Can symbolize time, e.g., event occurring after time T, 10 < T < 20.

If bug is found, computes actual values exercising it

Current “sweet-spots” of technology

– Memory verification: CAMs, caches, register files

– Unit level RTL functional verification: DMA, PCI,100-1000K
gate blocks

– Data movement, datapath

Simulation
driver

Simulation
engine Monitors

Symbolic
simulation

Coverage
analysis

Diagnosis of
unverified
portions

Vector
generation

Kurt Keutzer 70

Symbolic Simulation

INNOLOGIC: Limitations
Capacity limits:

– ~ 1 million gate equivalents
– # of symbols - design dependent.

• < 50 in worst cases (multipliers)
• several thousand in the best cases

(memory, data movement).
• When out of memory, turn symbols into binary values -

coverage lost but simulation completes.
Roughly 10 times slower than Verilog-XL
Can’t use in conjunction with Vera or Verisity currently.
Definitely worth a shot: Extra cost of symbols offset quickly, doesn’t
require major change in framework.
Full benefits of technology have not been realized yet.

Simulation
driver

Simulation
engine Monitors

Symbolic
simulation

Coverage
analysis

Diagnosis of
unverified
portions

Vector
generation

36

Kurt Keutzer 71

Emulation + Accelerated Simulation

QT Mercury SimServer

Bauer, Bershteyn, Kaplan, Vyedin. A Reconfigurable Logic Machine for
Fast Event-Driven Simulation, Proc. 35th DAC, 1998.

– Multiprocessing HW-accelerated Verilog simulator + emulator
– Automatic HDL partitioning: synthesizable modules to emulator,

behavioral modules to PowerPC CPUs (up to 10)
– Accelerated time wheel, event detection in emulator FPGAs

FPGA

XBar

FPGA

XBar

CPU+
Mem

Logic Board
FPGA

XBar

FPGA

XBar

CPU+
Mem

Logic Board

XBarXBar

Event Backplane
M. Butts - Synopsys

