Design Verification

Mike Butts
Synopsys
Prof. Kurt Keutzer
EECS
UC Berkeley

N O

Design Process

Design : specify and enter the ddi

intent
Verify:
verify the Implement:
correctness o refine the
design and design
implementation through all
phases

Kurt Keutzer

2N

Design Verification

Synthesis

netlist
Library/
module
generators

Kurt Keutzer

logic
optimization

netlist

physical
design

specification

Is the
design
consistent
with the original
specification?

Is what | think | want
what | really want?

N

Implementation Verification

Library/
module
generators

RTL (ELITE]
Synthesis design

netlist

logic
optimization

physical
design

Kurt Keutzer

Is the
implementation
consistent
with the original
design intent?

Is what |
implemented
what |
wanted?

2N

Manufacture Verification (Test)

RTL
Synthesis

netlist
Library/
module
generators

logic
optimization

netlist

physical

Kurt Keutzer

Is the
manufactured
circuit
consistent
with the
implemented
design?

Did they
build
what |

wanted?

N

Design Verification

- RTL

Synthesis

manual
design

netlist
Library/
module
generators

logic
optimization

physical
design

Kurt Keutzer

specification

Is the
design
consistent
with the original
specification?

Is what | think | want
what | really want?

2N

Verification is an Industry-Wide Issue

Intel: Processor project verification:
“Billions of generated vectors”
“Our VHDL regression tests take 27 days to run. ”

Sun: Sparc project verification:
Test suite ~1500 tests > 1 billion random simulation cycles
“A server ranch ~1200 SPARC CPUs”

Bull: Simulation including PwrPC 604
“Our simulations run at between 1-20 CPS.”
“We need 100-1000 cps.”

Cyrix : An x86 related project
“We need 50x Chronologic performance today.”
“170 CPUs running simulations continuously”

Kodak: “hundreds of 3-4 hour RTL functional simulations”
Xerox: “Simulation runtime occupies ~3 weeks of a design cycle”
Ross: 125 Million Vector Regression tests

Design Teams are Desperate for Faster Simulation

Kurt Keutzer

~

The Verification Crisis

Verification Consumes Hardware Design Cycle

Design
Creation

Physical

Verification Implementation

Physical

cDr::iig:n Veriﬁcation Implementation

Kurt Keutzer

/

Productivity Gap

10,000,000

Logic Tr./Chip

. 100,000,000

Kurt Keutzer

.E‘ 10
‘= 101 1,000,000 10,000,000
@)
5 100,000 FECRIACAD TG / 1,000,000 Z‘E
Complexity growth rate =)
2 3su 10,000 100,000 & &
5 \ Productivity Ga ! S 2
=) 1,00 10000 E £
2= y S g
10 1,000
- £
= 2.5 10 ; Yo/Y. ca ; 00 =
2 Pro¢ gre :
&L 1 o~ =N = 0o & 0
3 52528882328 5558 s
- SEMATECH
Kurt Keutzer 9
Verification Gap
10,000,000 | 100,000,000
=T /
‘= 101 1,000,000 10,000,000
®)
o UK S8%/Yr. compound 1,000,000 3}2
& Complexity growth rate = ;,l,
> 350 10,000 100,000 = ¥
= \ Verification Ga] g >
< 1,00 S—"10000 = £
g~ / N ° gz
10 1,000
§ X X > X m ES
= 2.5n 10 . Yo ompound 00 =
2 Prod gra :
3 FEEE28 882882828 s
- SEMATECH
10

Why the Gap?
logic_transistors lines_in_design bugs
X X
chip logic_transistors line_of_design
bugs
chip

Kurt Keutzer 11

N O

Filling in Reasonable Numbers

logic_transistors lines_of_design bugs
X X
chip logic_transistors lines_of_design
10,000,000 trs 1 1
X X
chip 10 10,000
100 bugs
chip
Kurt Keutzer 12

2N

Raising the Level of Abstraction

logic_transistors lines_of_design

X X

chip logic_transistors
10,000,000 trs 1
chip X X
10 bugs
i chip

Kurt Keutzer

bugs

lines_of_design

1

10,000

this year!!

13

N O

Moore’s Law Implies More Bugs

logic_transistors lines_of_design

X X

logic_transistors

000,000,000 tr§ 1

100

chip

chip

1000 bugs

chip

Kurt Keutzer

bugs

lines_of_design

1

10,000

5 years!!

14

2N

The Verification Bottleneck

Verification problem grows even faster due to the

combination of increased gate count and increased vector count

10B

100M
™

10,000x more Vectors
Required to Validate

100k 1M _10M
100x Gate Count

100 x 10,000 =
1 million times
more Simulation Load

Kurt Keutzer 15
Time to boot VxWorks M. Butts - Synopsys
1 million instructions, assume 2 million cycles
Today’s verification choices:
50M cps: 40 msec Actual system HW
5M cps: 400 msec Logic emulator! (QT Mercury)
500K cps: 4 sec Cycle-based gate accelerator! (QT CoBALT)
50K cps: 40 sec Hybrid emulator/simulator? (Axis)
5Kcps: 7 min Event-driven gate accelerator? (Ikos NSIM)
500 cps: 1.1 hr
50 cps: 11 hr CPU and logic in HDL simulator3 (VCS)
5cps: 4.6 days
1: assumes CPU chip 2: assumes RTL CPU 3: assumes HDL CPU
Kurt Keutzer 16

Aspects of Design Verification

Initial Specification
Validation
HDL Functional
Verification
(interactive)

HDL Functional
Verification
(regressions)

Implentatation In-System
Verification

Kurt Keutzer

17

N

Phases of Design Verification

0N

Basic Functionality DESIGN AUTOMATION

>

Bugs Found

1

1

1

1

: Finding tough bugs is ad hoc & bru
1 » takes 80% of time, effort, & re:
: » represents most of the risk

: » is an unbounded problem

:

1

1

1

Time

Kurt Keutzer

Tapeout

NS

Technologies for Design Verification

Software Simulation

— Application of simulation stimulus to model of circuit
Hardware Accelerated Simulation

— Use of special purpose hardware to accelerate
simulation of circuit

Emulation

— Emulate actual circuit behavior - e.g. using FPGA’s
Rapid prototyping

— Create a prototype of actual hardware
Formal verification

— Model checking - verify properties relative to model

— Theorem proving - prove theorems regarding
properties of a model

Kurt Keutzer 19
Matching Problems and Technologies
" "Ttttttttttttttttoooooooooo--------=5 Event Driven
pecification E . . .) i
vent-driven Simulation : -
Validation E Interactive Phase
T —] — High flexibility
V:r?;:t::tril:n i — Quick turnaround time
(Interactive) i -~ Good c.iebug -capabilities
Cycle-base Cycle-based snrlulatlon
Functional simulation — Regression Phase
Verification — Highest performance
(regressions) — Highest capacity
Emulation and Acceleration
'“'_SYS“‘;'“ Emulation/ — In-System Verification
Verification Rapid Protyping — Highest performance
— Highest Capacity
.] — Real system environment
Imple_"?em,a tion Equivalence Checking
Verification E
Kurt Keutzer 20

Axis (Emulator) View

Performance/capacity scale

Ruis Sysbéns
ReConfiguaile
Comsputing

Gals
Emzlation

Performance

Capacity

Kurt Keutzer

21

N O

Approaches to Design Verification

Software Simulation
— Application of simulation stimulus to model of circuit
Hardware Accelerated Simulation

— Use of special purpose hardware to accelerate
simulation of circuit

Emulation

— Emulate actual circuit behavior - e.g. using FPGA’s
Rapid prototyping

— Create a prototype of actual hardware
Formal verification

— Model checking - verify properties relative to model

— Theorem proving - prove theorems regarding
properties of a model

Kurt Keutzer

22

2N

Simulation: The Current Picture

Simulation .| Simulation

. »> . » Monitors
driver engine

SHORTCOMINGS:
* Hard to generate high quality input stimuli

— A lot of user effort

— No formal way to identify unexercised aspects
* No good measure of comprehensiveness of validation

— Low bug detection rate is the main criterion

* Only means that current method of stimulus generation
is not achieving more.

Kurt Keutzer 23

Simulation

Simulation >
engine P

driver

Monitors

Simulation Drivers

Symbolic S
simulation s

~ .
~N
Diagnosis of Coverage

Input stimuli consistent with circuit qoneraton [umieried [anaiysis
interface must be generated

Vector o

Environment of circuit must be represented faithfully
Tests can be generated

— pre-run (faster, hard to use/maintain)

— on-the-fly (better quality: can react to circuit state)
Environment and input generation programs written in

— HDL or C, C++, or

— Object-oriented simulation environment

* VERA, Verisity
Sometimes verification environment and test suite come with
product, e.g. PCl implementations, bridges, etc.

Kurt Keutzer 24

Simulators

Simulation
driver

Monitors

Symbolic
simulation

EVENT DRIVEN
+ VCS

« Affirma

* Verilog-XL, ...
CYCLE-BASED
* Cyclone VHDL
* Cobra, ...
HYBRID

+ VSS

Kurt Keutzer

-/‘
L
-

Vector | Diagnosis of
generation [°N unverified [
portions

Coverage
analysis

25

N O

Monitors

engine Ll Monitors

I 4

" Symbolic
A g simulation

Reference models (e.g. ISA model)
Temporal and snapshot “checkers”

Can be written in C, C++, HDLs, and
VERA and Verisity: A lot of flexibility

1

vetor | Diagnosis of |
generation [unverified <

Coverage
analysis

portions

Assertions and monitors can be automatically generated: 0-in’s

checkers
Protocol specification can be given as
a set of monitors
a set of temporal logic formulas
(recent GSRC work)

Kurt Keutzer

26

2N

Types of software simulators

Circuit simulation
— Spice, Advice, Hspice
— Timemill + Ace, ADM
Event-driven gate/RTL/Behavioral simulation

— Verilog - VCS, NC-Verilog, Turbo-Verilog, Verilog-XL

— VHDL - VSS, MTI, Leapfrog
Cycle-based gate/RTL/Behavioral simulation

— Verilog - Frontline, Speedsim
— VHDL - Cyclone
Domain-specific simulation

— SPW, VCC, COSSAP,
Architecture-specific simulation

Kurt Keutzer

27

N O

Event-driven simulation

Key elements:

— Circuit models and libraries
* cells
* interconnect
— Event-wheel
* Maintains schedules of events
* Enables sub-cycle timing
Advantages
— Timing accuracy
— Handles asynchronous
Disadvantage - performance and data management

Kurt Keutzer

28

2N

Event versus cycle-based simulation

data X X X:X Event-Driven Simulator:

« Simulates Function
« Tracks event activities and timing

data X X Cycle Based Simulator:
* Simulates Function
* Accurate at Clock boundaries

Which approach is faster?

Kurt Keutzer

29

N O

Approaches to Design Verification

Software Simulation
— Application of simulation stimulus to model of circuit
Hardware Accelerated Simulation

— Use of special purpose hardware to accelerate
simulation of circuit

Emulation

— Emulate actual circuit behavior - e.g. using FPGA’s
Rapid prototyping

— Create a prototype of actual hardware
Formal verification

— Model checking - verify properties relative to model

— Theorem proving - prove theorems regarding
properties of a model

Kurt Keutzer

30

2N

Gate-level Event-driven Sim Acceleration

HW implementation of gate-level event-driven

algorithm
— — Full timing, many states
Event Scheduler | & — Exploits low-level parallelism (pipelining)
Primitive Evaluators Design partitioned for high-level parallelism
Event Detector — Limited: irregular topology, event
Netlist Fanout » T distribution
713 — Much work in the 1980’s: order 10X, not
Z 100X
s | Performance
- g - glc;'s/eval * 100 MHz * 10 procs @ Max. 5B
Primiive Evaluators — “7-25X HDL simulator”, “500 to 5K cps”
Event Detector (NSIM)
Netlist Fanout > Usability

— — Easy to use, quick compilation
— Full timing and states

M. Butts - Synopsys

Kurt Keutzer

31

N O

Gate-level Event-driven Simulation Accelerator

Just one: Ikos NSIM

— 4-input table primitives, RTL
synthesis front-ends
— 8 to 64 processors, 0.5M to 15M
gates
Value

— Much faster than unaccelerated
simulators

— Not quite fast enough to run
much code on the design

Competition

— Modern compiled or cycle-based
SW on standard multi-processor
platforms

— Gate-level event-driven HW
accelerator usually isn‘t enough
better

e Today's GP multiprocessors
exploit low and high-level
parallelism

Kurt Keutzer

32

2N

Approaches to Design Verification

Software Simulation

— Application of simulation stimulus to model of circuit
Hardware Accelerated Simulation

— Use of special purpose hardware to accelerate
simulation of circuit

Emulation

— Emulate actual circuit behavior - e.g. using FPGA’s
Rapid prototyping

— Create a prototype of actual hardware
Formal verification

— Model checking - verify properties relative to model

— Theorem proving - prove theorems regarding
properties of a model

Kurt Keutzer 33

N O

FPGAs as logic evaluators

Today: 2 trillion gate evaluations per second per FPGA (200K gates, 10M cps)

— Growing with Moore’s Law as designs do
— $1.5B industry behind it (XLNX+ALTR+ACTL)
Potent tool for logic verification and validation

How best to put the FPGA to use?

Input/Qutput Blocks (I08s)

A Data-_. XCADODISpartan — . pata2
as | las | las E Addreis— TERCHRAM . agdecd
! T We Singte 2ot
: = 3, 16x2 Optional
e & otk Duiton Doal Port
a | fdv | s 1
5
w = v) Combinatorial
[<1:3 s B 3 and Registered
9

M. Butts - Synopsys

Kurt Keutzer 34

2N

Logic Emulation M. Butts - Synopsys

Ultra-large “FPGA”
Emulation Compiler,

Run-time Software Live hardware, gate-for-gate.

Design Source

Entire design or major module is
flattened, and compiled at
once into multi-FPGA form.

Logically static circuit-switched
interconnect.

In-circuit or vector-driven

Regular clock rate, > 1M cps.

e !
S—
Emulator &
= & B
CER L |

Target Hardware

Kurt Keutzer

35

N O

Verification using Emulation

RTL or Gate

System Hardware

— Customized parallel
processor system for
emulating logic

— In-circuit target interface
Software Compiler

— Mapping RTL & Gate
designs to emulator

Runtime Software
— C-API

— Open SW architecture for
tight integration

In-circuit Target Board

Kurt Keutzer

— Flexible modes of stimulus

36

2N

General Logic Emulation HW

Network <] o ur
[
iLogic Board i iLogic Board i
[FPGA | - [FPoa | [FPGA | - [FPoa |
l XBar ‘ fffff l XBar ‘ l XBar ‘ fffff l XBar ‘
—

Logic Analyzer
Pattern Generator

In-Circuit Cable

Tens to hundreds of large FPGAs
Interconnect, either:

— Programmable crossbars
(QT), or

— Nearest-neighbor with time-
multiplexing (lkos).

SRAMSs for modeling memory

CPUs for behavioral simulation &
testbenches (QT Mercury)

Dedicated logic analyzer / pattern
generator for visibility & vectors

In-circuit cable plugs into target

M. Butts - Synopsys

Kurt Keutzer 37
General Logic Emulation SW
Entire design is flattened
Input — Emulation-specific HDL synthesis
Design Clock tree timing analysis
— To avoid functional errors when
gated clocks get split across
FPGAs
v D Multi-level, multi-way partitioning
Tech Mapper A NP-hard te int .
Clock Analysis ; - -hard, very compute intensive
B System placement (lkos only)
2 Place & route for every FPGA
—4 System Placer (if needed) E — Can be runin paraIIeI
— Interdependent due to
interconnect
Design database system
I Needs to be automatic and totally successful
_-
M. Butts - Synopsys
Kurt Keutzer 38

Cycle-based Emulator

Levelized compiled simulation in massively parallel hardware form

— All gates evaluate every cycle

— No run-time data dependencies, so processors and IPC network
are scheduled at compile time

Severe design constraints
— No asynchronous feedback, latches, etc.
— No timing: multiple related clock domains only by LCD slowdown
— Commonly OK for microprocessors, much less so in general
Compilation
— Given design constraints, relatively easy to use
— Fast: 2M gates per hour (CoBALT)
History
— IBM: Yorktown Simulation Engine, ET3 / Quickturn CoBALT
— Arkos=> Synopsys => Quickturn => Cadence

M. Butts - Synopsys

Kurt Keutzer 39

Cycle-based Emulator

Just one: Cadence/Quickturn CoBALT
SN = sl 4-PoRT IBM Poughkeepsie ET3 technology

—————— 1 SIACKS
1 e e - 500 MHz custom chip, compiler core
l — Up to 20M ASIC gates:

¢ 128 3-input prims / processor
(CE, new CL: 2.5X)

e 64 processors per chip
— ¢ 64 chips per board, 8 boards
BT OUT

WODULE T WODALL
B O

Performance
BT IN | DATA FLOW CONTROLS

o h [Lenour — 32 trillion gate evaluations /sec (max)
BT Ul

cuniy_| O0E nooe wooe | (2 gate equivalents / processor cycle *
Jopsess - LEL OUT Ans SN R 64 processors/chip * 6p4 chips/board *
o 8 boards * 500 MHz)

| — 10K to 500K cps in actual practice

| | HODE BT QuT-uf 1-of -~
} THUM NCOE O f Iu ul |u Usage
L N
1 X X 2 |x
1 HOGE BT ouT L) SE—|
TreoM MAK &3 T
0F BT B OF s
OH

':
I
:
! — Vector memories or in-circuit cable
T
]
1

TPLEXER FOR EACH NODE)

— PCI link to workstation simulator

M. Butts - Synopsys

Kurt Keutzer 40

Cycle-based Emulator

Much faster than SW or event-driven accelerator
Runs actual code and data, in actual target systems
Harder to use than SW or event-driven accelerator, but easier than emulator
Severe restrictions on design style
- Purely synchronous design OK, else No.
Expensive, complex, proprietary HW, SW
- Custom chips, interconnect, PCBs, connectors, chassis,
instrumentation
- Compiler is substantial effort to develop & maintain
Isolated from simulation, separate environment, proprietary simulator
Conclusion:
— Good solution for large fully synchronous projects that can afford
it
— Not a mainstream technology

M. Butts - Synopsys

Kurt Keutzer

41

N O

State-of-art in CBE: Cobalt Ultra

* 112 Million ASIC gates

* 64 Gbytes Memory

» 4224 Bi-Directional I/O

+ Compiles 4M ASIC gates/hour
* Performance up to 600KHz

CoBALT

Kurt Keutzer

42

2N

Characteristics of Logic Emulation

Maximum Validation, fastest runtime speed

= Runs actual code and data, in actual target systems
No restrictions on design style

- Gated clocks split across FPGAs may cause correctable functional errors
Expensive, complex, proprietary HW, SW

- Interconnect, PCBs, connectors, instrumentation; big FPGA tech. lag

- Compiler is hard to develop & maintain, user must be full-time expert
Inflexible

- Interconnect architecture makes FPGAs interdependent - changes often
cause long recompile

Isolated from simulation or integrated with proprietary simulator
It's HW speed, but not design speed; target HW slowdown required
FPGA logic capacity tracks Moore's Law...

But interconnect capacity does not track Moore's Law.

M. Butts - Synopsys

Kurt Keutzer 43

The Emulation Interconnect Problem

M. Butts - Synopsys

10000000 100000
1000000 - o)
+ 10000 FPGA capacity is emulation usage:
8 gates / 4-LUT+FF, 75% packing.
100000 - ;))
Pins needed is for emulation usage:
10000 + 1000 p=275g 0.58
gates pins Package pins are Xilinx FPGA IOBs
1000 100 (1991-2000, extrapolated afterwards).
1990 1995 2000 2005 2010

Rent's Rule (p = Kg ") applies to partitioned designs.
FPGA logic capacity: 2X / 1.5 yr (Moore's Law)
FPGA pins needed by emulator: 2X / 2.5 yr (Moore + Rent)
Package pins: 2X / 4 yr - Can't keep up.
Vendors are time-multiplexing pins more and more to compensate.
— But that’s only a linear effect; it does not change the doubling time.

Kurt Keutzer 44

Emulation Conclusions M. Butts - Synopsys

Market is flat at $100M/year
Expensive HW, SW, cost of sales

— High-end supercomputer-like business
Current competition

— Simulation farms have similar $/cycle/sec for regression
vector sets

— FPGA-based rapid prototyping for validation, SW execution

Good solution for large projects that can afford it

Ultimately the basic concept is limited by IC packaging

Kurt Keutzer

45

N O

Axis Reconfigurable Computing

Kurt Keutzer

46

NS

The Traditional Problem:
Different environments create varying degrees of verification
gaps during the design flow

1-10M

200-1000K Verification
Environment
GAP
In-Circuit

Module Block Sub System System

Level Level System Simuldtion
Simulation ~ Simulation gimulation When?

Emulation

Simulator

Accelerator

Digital MPEG . .
Adder + ALU + Filter + Video Multimedia
Multiplier Sequencer uP Decoding Set-Top Box

Emulator

Axis Product Overview

v

m IP Builder «
ah O

Recently announced Xtreme-II & Mixed HDL

Kurt Keutzer 48

AXxis Product Characteristics

Xcite 1000 2M gate
Xcite 2000 10M gate
Xtreme 10M gate
Xtremell 100M gate

Kurt Keutzer

100K cycle/sec
200K cycle/sec
500K cycle/sec
1,000K c/sec

49

N O

AXxis Extreme Characteristics

-

. Hardware Architecture

2. Design Format 2.
3. Verilog Software Simulator: Xsim 3.
4. Capacity 4.
5. Simulation Performance 5.
6. Emulation Performance 6.
7. Memory 7.

Debugger Native Verilog interface.
Built-in Clock Generators
Supports up to 48 clock domains

* Programmable Trigger Generators
Supports up to 1024 probes per
trigger and up to 48 separate
trigger generators

Kurt Keutzer

1. Re-configurable computing engine

RTL and Gate Level

Native compiled with event look-
ahead. Supports all Verilog
constructs including PLI

Up to 20M gates
Up to 100K cycles/second
Up to 500K cycles/second

Up to 384M bits of on-board RCC
memory. Up to 18.75M bits of
internal cache. Expanding up to
4G of memory mapped
workstation memory

All internal nodes visible. Real
time emulation/simulation state
swap between software and
hardware

50

2N

Axis Xtreme

Kurt Keutzer

51

N O

Approaches to Design Verification

Software Simulation

— Application of simulation stimulus to model of circuit
Hardware Accelerated Simulation

— Use of special purpose hardware to accelerate
simulation of circuit

Emulation

— Emulate actual circuit behavior - e.g. using FPGA’s
Rapid prototyping

— Create a prototype of actual hardware
Formal verification

— Model checking - verify properties relative to model

— Theorem proving - prove theorems regarding
properties of a model

Kurt Keutzer

52

2N

Rapid System Prototyping Environment

& Need low-cost, instrument-like system prototyping environment
¢ Must be well-integrated into overall component-based flow

Aptix System Explorer™ Aptix System Explorer™
0
Development Software MPSC or MPa A t
Sun, HP . p l

Ethernet

Kurt Keutzer

53

Rapid Prototyping of ASICs and SoCs

Target-specific tools Peripheral 10
— ASIC/core+FPGA:
Philips/VLSI Velocity, ARM A Syeiain —
($5K) SSURL ¢ ontroller

Interface (EBI)
Expansion

FPGA

— FPGA+RAM: Altera/ARC
“SoC” board (100KG, $5K)
GP tool

— Aptix: daughtercards, prog.
breadboard, > $100K

Rapid Prototyping Characteristics

5 Real HW running at MHz,
low cost HW

- Isolated from simulation,
throwaway effort

M. Butts - Synopsys

Kurt Keutzer

Summary

Design Verification IS the biggest problem in IC design today
Verification teams ARE getting larger than design teams
No silver-bullet solutions on the horizon
Successful groups
— Intel, NVidia, IBM — use a bit of everything

— Leading adopters of new technology
Buying behaviors in software verification are poor

— All software solutions seen as ““simulators” — poor ASPs

Kurt Keutzer

55

N O

Approaches to Design Verification

Software Simulation
— Application of simulation stimulus to model of circuit
Hardware Accelerated Simulation

— Use of special purpose hardware to accelerate
simulation of circuit

Emulation

— Emulate actual circuit behavior - e.g. using FPGA’s
Rapid prototyping

— Create a prototype of actual hardware
Formal verification

— Model checking - verify properties relative to model

— Theorem proving - prove theorems regarding
properties of a model

Kurt Keutzer

56

2N

How to make it smarter: Intelligent Simulation

Simulation

driver

Vector

Simulation
engine

Symbolic
simulation

Y

generation |

Diagnosis of
unverified
portions

A 4

Monitors

Coverage
analysis

Kurt Keutzer

57

N O

How to make it smarter: Intelligent Simulation

CLOSED FEEDBACK LOOP

Simulation

driver

Vector
generation

Simulation
engine

A

Symbolic
simulation

Diagnosis of
unverified
portions

Monitors

Coverage
analysis

Kurt Keutzer

58

2N

Simulation
engine

Simulation
driver

Symbolic Simulation

IDEA: One symbolic run covers many
runs with concrete values.

Diagnosis of
unverified
portions

Vector
generation

Some inputs driven with symbols instead of concrete values
+2(# symbols) equivalent binary coverage

Kurt Keutzer

Monitors

Coverage
analysis

59

N

Simulation
engine

Simulation
driver

Coverage Analysis

Monitors

Symbolic
simulation

Why?

* To quantify comprehensiveness
of validation effort

Diagnosis of
unverified
portions

generation
— Tells us when not to stop

— Even with completely formal methods, verification is only as
complete as the set of properties checked

» To identify aspects of design not adequately exercised

— Guides test/simulation vector generation
» Coordinate and compare verification efforts

— Different sets of simulation runs
— Different methods: Model checking, symbolic simulation, ...

Kurt Keutzer

Coverage
analysis

60

NS

Vector Generation N e e
driver . .
A - - Symbolic S - ~
. simulation ‘S

L
-, \-
- ~N

Classification:

— Algorithmic methods
* Guided search of state-space
—Traverse “more relevant” portion

* Vector generation aimed at coverage

—Generate input stimuli to
— “Randomized” methods

Trade-off between

— Time to find “good” vectors

— Time to simulate vectors

Kurt Keutzer

Diagnosis of
unverified |«
portions

analysis

Vector Coverage
generation

Portion of Computation Time

0-In extends the

value of simulation

with white-box
verification

0-In brings the
power of formal
verification to a
simulation-based
methodology

Kurt Keutzer

& Fffective Verification

0% 100%
Find Simulate
61
Improved Time to Market: More Efficient
Vo
CheckerWare
Library
Verilog Instrument
0-In Directives 0-In Checkers
Simulate
Standard
Waveform Tool
e iz e
4 Reports
Amplify

62

CheckerWare Library O,I’N'

PR L ST S

0-In CheckerWare

(Examples)

Uniqug, capability increases adoption

Data path o Busesand ~ [Reduces assertion specification
elements AT interfaces ime .
Sback_pressure . - assert_ window ~> [Eliminates protocol monitor

« data_used > GRS « assert_follower evelopment time

« data_loaded - sequence « assert_timer

« fifo e rehoard . change_vlvindow

* memory_access e - change_timer

» multi_clock_fifo « outstanding_i

« state_transition

© SIEES - timeout CheckerWare Monitors
\——w/
A rich library of
assertion checkers for LPC SDRAM
complex logic PCI SPI-4 DDR SDRAM
CheckerWare PCI-X PLgSO E II"lAY DDR2 SDRAM
Monitors deliver an AMBA i DDR SRAM
executable HyperTransport ~ CSIX QDR SRAM
specification InfiniBand
Kurt Keutzer 63

Solving the Critical Problems OIN

DESIGN_AUTOMATION

Protocol
Monitors and

Constraints CheckerWare

Monitors
Complex
Properties &
Interface
Checkers CheqkerWare
Library
Basic
Properties Basic
. Assertions
Netlist
Functional Static
Checks Checks

cluster chip system >
»
Kurt Keutzer 64

0-In Check Makes Simulation More O N

Efficient
e
-
» c
Detects bugs earlier = 9 S
when they are less g g @
expensive c o g
»)
Reduces debugging
time

Reduces test
redundancy

Reduces reliance
on brute-force

sy29yn
[euonoun4

methods
+ checker
Kurt Keutzer 65
Structural Coverage
o T [m—
Sol |fos o :
S = e L :m
g3 83
S =S = g
Coverage metric drives g c =) —
methodology = @ - Qo .
~ validated
AT P
Testbenches are SE== t C:l;- &
developed with @ g Q '8
Specman, Vera, gE By g > = —
C/C++, Superlog, g @ PKror @@ -
Verilog, etc. H not validated
Structural Coverage is built into CheckerWare
— Effective method for testbench grading
— Implementation-specific
* Checkers capture structural characteristics of design
* Familiar RTL structures (memories, FIFOs, state machines, etc.)
+ o + Checker-specific corner cases (FIFO full, FIFO empty, etc.)
¢ e%fective and actionable
Guide development of additional tests to plug verification holes 66

Kurt Keutzer

0-In Search Makes Simulation More Effective

& of
2 8a
Reduces reliance =R <N
on manually- Z w3
written directed -
tests
Finds bugs Black-Box Simulation
simulation misses
£ v g
<ol
- ayflii
A
< checker :
Kurt Keutzer + constraint 0-In Search 67
Status of Design Verification
Software Simulation
— Too slow
— Moving to higher levels is helping — but not enough
Hardware Accelerated Simulation
— Too expensive
Emulation
— Even more expensive
Rapid prototyping
— Too ad hoc
Formal verification
— Not robust enough
Intelligent Software Simulation
— Symbolic simulation — not robust enough
— Coverage metrics — useful, but not compehensive enough
— Automatic vector generation — not robust enough
Kurt Keutzer 68

Simulation N

Symbolic Simulation i [

Monitors

INNOLOGIC:
BDD-based symbolic Verilog simulators

Vector | g Diagnosis of

generation [unverified |«
portions

Coverage
analysis

o ESP-XV: For processor and networking applications

o ESP-CV: For memory verification and sequential
equivalence checking

¢ Monitors can have symbolic expressions
o Can symbolize time, e.g., event occurring after time T, 10 < T < 20.
o If bug is found, computes actual values exercising it
o Current “sweet-spots” of technology
- Memory verification: CAMs, caches, register files
- Unit level RTL functional verification: DMA, PCI,100-1000K

N O

gate blocks
Kurt Keutzer Data movement, datapath o
Symbolic Simulation e [.
A -
INNOLOGIC: Limitations o || o= —
e Capacity limits: porions

— ~1 million gate equivalents
— # of symbols - design dependent.
* <50 in worst cases (multipliers)

¢ several thousand in the best cases
(memory, data movement).

* When out of memory, turn symbols into binary values -
coverage lost but simulation completes.

e Roughly 10 times slower than Verilog-XL
e Can’t use in conjunction with Vera or Verisity currently.

=> Definitely worth a shot: Extra cost of symbols offset quickly, doesn’t
require major change in framework.

=> Full benefits of technology have not been realized yet.

Kurt Keutzer 70

2N

Emulation + Accelerated Simulation

Event Backplane

M. Butts - Synopsys

I Logic Board

%AZL:: — FPea | [FPoa |

l XBar ‘\BBar l

Logic Board
(,iAF:: — Frea | [FPGa |
l XBar ‘ l XBar ‘
S

XBar

XBar

QT Mercury SimServer

Bauer, Bershteyn, Kaplan, Vyedin. A Reconfigurable Logic Machine for
Fast Event-Driven Simulation, Proc. 35th DAC, 1998.

Multiprocessing HW-accelerated Verilog simulator + emulator
Automatic HDL partitioning: synthesizable modules to emulator,

behavioral modules to PowerPC CPUs (up to 10)
— Accelerated time wheel, event detection in emulator FPGAs

Kurt Keutzer

71

