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Outline

• Motivation for Multilevel
• Overview of Techniques
• Details on multilevel techniques
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2-Level =>Programmable Logic Arrays (PLAs)
We can represent any Boolean function in a 2-level/SOP 

form
Any such representation can be implemented in a PLA

4 inputs

3 outputs

6 product terms
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Why Multilevel Combinational Circuits?

There are many functions that are too 
“expensive” to implement in two-level form

Try 16-bit adder   ⇒ 32 input lines and 216

product terms!

2-level:  control logic design
multi-level: datapath logic or random logic
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Two-Level versus Multilevel

Even simple functions expressed in 2-Level:

6 product terms which cannot be shared.
24 transistors in static CMOS

May be more efficient in multi-level:

Note that B + C is a common term in  f1 and  f2

K = B + C 3 Levels
20 transistors in static CMOS
not counting inverters

f1 = AB + AC + AD
f2 = AB + AC + AE

f1 = ΑΚ + AD

f2 = AK + A E
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RTL Design Flow
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Logic Optimization

Perform a variety of 
transformations and 
optimizations

Structural graph 
transformations

Boolean transformations
Mapping into a physical library

smaller, faster
less power
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Reduce to Combinational Optimization

B
Flip-flops

Combinational
Logic
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Representation: Boolean Network

 y1  y2   y3   y4

 y5   y6

 y7   y8

 y9   y10

 

y5 = H5 = y 1y2
y6 = H6 = y3 y4
y7 = H7 = y1y 6 + y2
y8 = H8 = y5 + y6
y9 = H9 = y7
y10 = H10 = y8

  

A Boolean network is designatedη = ( v y ,
v 

H ) where:
 v y = (y1 ,K , yn+m+r ) is a vector of variablesv 
H = (H1 ,K , Hn+m+r )  is a vector of functions

y1 ,K , yn are the primary input variables
yn+1,K , yn+r  are the intermediate variables
yn+r+1,K yn+m+r  are the primary output variables

yi = Hi (y1,K yn+m+r ) 

A Boolean network has an associated graph
which shows the function dependencies;
i.e., the edge (i, j) is present if yi ∈sup(H j ).
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Combinational Logic Optimization

Input: 

Initial Boolean network
Timing characterization for the module

- input arrival times and drive factors
- output loading factors

Optimization goals
- output required times

Target library description
Output:

Minimum-area net-list of library gates which meets timing 
constraints

A very difficult optimization problem !
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Modern Approach to Logic Optimization
Divide logic optimization into two subproblems:

• Technology-independent optimization
- determine overall logic structure
- estimate costs (mostly) independent of 

technology
- simplified cost modeling

• Technology-dependent optimization (technology 
mapping)

- binding onto the gates in the library
- detailed technology-specific cost model

Orchestration of various optimization/transformation 
techniques for each subproblem
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Formats

Boolean Network, Boolean equations 
Generic library – technology independent
• Has standard functions – ND2, ND4, AOI22, pos-edge-

FF
• only an estimate of timing
Actual technology library
• Represents logic functions and their physical 

characteristics of a library cells offered by a particular 
silicon vendor – e.g. TSMC

• E.g. captured in .lib file
• Contains complete logical, timing information
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Logic Optimization
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Tech.-Independent Optimization

Involves:
Minimizing two-level logic functions.
Finding common subexpressions.
Substituting one expression into another.
Factoring single functions.

Factored versus Disjunctive forms

sum-of-products or disjunctive form

factored form
multi-level or complex gate

f = ac + ad + bc + bd + ae

f = a + b( ) c + d( ) + a e
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Decomposition

Searching for divisors which are common to many functions in 
the network

Decomposition:

identify divisors which are common to several functions
introduce common divisor as a new node

re-express existing nodes using the new divisor
Technology-independent measure of cost to measure goodness

area cost: total number of literals

delay cost: levels of logic on the critical path

  G is a Boolean divisor of F if F = G⋅ H + R for functions H ≠ 0, R ≠ 0
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Division

• If h ≠ 0, and h can be obtained using algebraic division, 
then g is an algebraic divisor of f. Otherwise, g is a 
Boolean divisor of f.

• Example:
f   = ad + ae + bcd + j
g1 = a + bc
g2 = a + b

• Algebraic division f//a = d + e, f//(bc) = d 
• Also, 

f//a = d or f//a = e, i.e. algebraic division is not unique) h1 = 
f//g1 = d, r1 = ae + j

• Boolean division: h2 = f ÷ g2 = (a + c)d, r2 = ae + j.
i.e. f = (a+b)(a+c)d + ae + j
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Given a function  f to be strong divided by  g
Add an extra input to f corresponding to  g, 

namely  G and obtain function  h as follows

Minimize  h using two-level minimizer

Strong (or Boolean) Division

hON = fON − hDC

hOFF = fON + hDC

hDC = G g + G g
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Algebraic vs. Boolean Methods

Algebraic techniques view equations as 
polynomials and attempt to factor equations or 
“divide” them
Do not exploit Boolean identities e.g.,  a a  =  0

In algebraic substitution (or division) if a function 
f = f(a, b, c) is divided by  g = g(a, b), a and b
will not appear in f / g

Algebraic division:  O(n log n)  time
Boolean division:    unmanageable number of 

divisors
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Algebraic factorization procedures

Boolean factorization produces

Comparison of factorization

f = a b + a c + b a + b c + c a + c b

f = a b + c( ) + a b + c( ) + b c + c b

f = a + b + c( ) a + b + c( )
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Substitution is the factoring of one node in the 
Boolean Network (e.g. l) by another (e.g. r)

Algebraic substitution of  l into  r fails
Boolean substitution yields results

Comparison

l = b f + bf( ) a + e( ) + ae b f + bf( )
r = b f + b f( ) a + e( ) + ae b f + bf( )

r = a e l + el( ) + a el + el( )
l = a er + e r( ) + a e r + e r( )

After resub:
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Algebraic Decomposition
Algebraic approximation (informal definition)

- simplify Boolean function using two-level minimization
- treat result as a polynomial; i.e.,

- identify common divisors as algebraic divisors of the 
polynomials

  
xi  and x i  are different variables
i.e., xi ⋅ x i ≠ 0 and xi ⋅ xi ≠ xi
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Algebraic Decomposition
Algebraic approximation (informal definition)

- simplify Boolean function using two-level minimization
- treat result as a polynomial; i.e.,

- identify common divisors as algebraic divisors of the 
polynomials

Motivation
- manipulating polynomials is fast (linear time algorithms)
- # algebraic divisors still exponential, but usually 

manageable
- loss of optimality, but experimentally shows good results

- interleave Boolean simplification procedures to improve 
results

  
xi  and x i  are different variables
i.e., xi ⋅ x i ≠ 0 and xi ⋅ xi ≠ xi
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Algebraic Decomposition
Algebraic approximation (informal definition)

- simplify Boolean function using two-level minimization
- treat result as a polynomial; i.e.,

- identify common divisors as algebraic divisors of the 
polynomials

Techniques
- single-cube algebraic divisors (common-cube 

decomposition)

- multiple-cube algebraic divisors (kernel decomposition)

  
xi  and x i are different variables
i.e., xi ⋅ x i ≠ 0 and xi ⋅ xi ≠ xi
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Decomposition?

F = a d e + b d e + c d e + f 

G  = b g + c g + d g + a e f 

H = a e g + b c

How can this logic be further simplified?



14

Copyright © 2001 K. Keutzer

Kurt Keutzer 27

Common Cube Decomposition

Finds algebraic divisors which are single cubes

"Common cubes" are easy to detect

Greedy algorithm: 

– enumerate all maximal common cubes
– select cube which saves the most literals
– add node to the network and re-express affected 

nodes

– repeat until no common cubes remain

References: [Dietmeyer-69], [Brayton-82], [Rudell-89]

F = a d e + b d e + c d e + f 
G  = b g + c g + d g + a e f 

H = a e g + b c

F = X d + b d e + c  d e + f 
G  = b g + c g + d g + X f 

H = X g + b c
X = a e
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Kernel Decomposition

cube-free: an expression is cube-free if no literal appears in every cube

kernel: A kernel of an expression is a cube-free divisor which is not contained in 
any other cube-free divisor (e.g., a + b + c is a kernel of F, while b + c is not a 
kernel because it is contained in a + b + c)

Kernels are useful because:

- if f and g share a common multiple-cube divisor, then the intersection of 
some kernel from f and some kernel from g yields a common multiple- cube 
divisor [Brayton-82].

- practical algorithms exist to find intersections of kernels [Rudell-89].

- kernel decomposition finds solutions which are difficult to find using only 
common-cube decomposition

F = a d e + b d e + c d e + f 
G  = b g + c g + d g + a e f 

H = a e g + b c

F = (a + b + c) d e + f
G = (b + c + d) g + a e f

H = a e g + b c

F = (a + X) d e + f
G = (X + d) g + a e f

H = a e g + b c
X = b + c
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Selective Collapsing

"Collapse" nodes into their fanout to increase the size of each node

f = a h + b h' + c d
g = b h
h = a c + d'

collapse h

f = a (a c + d') + b (a' d' + c' d') + c d
g = b (a c + d')

simplify

f = a c + a d' + a' b d' + b c' d' + c d
g = a b c + b d'

Goals:

- remove bad initial 
structure

- reduce logic level depth

- expose further 
optimization opportunities
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Summary of Typical Recipe

Selective-collapse

Simplify: Two-level minimization at Boolean network 
node

Structuring/Algebraic decomposition

Local Boolean optimizations

Tree-covering for gate selection

Load-buffering for fanout-tree construction

Local transformation improvement of circuit structure

Restructure and iterate if timing constraints not met

Technology
Independent
Optimization

Technology
Mapping
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Outline

• Motivation for Multilevel
• Overview of Techniques
• Details on multilevel techniques
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Decomposition - details

Factor F

Extract common expression

F =
f1 = AB + AC + AD + AE + ABC D E
f2 = AB+ AC + AD + AF + ABC D F

   

F =
f1 = A B+ C + D + E( ) + ABC DE

f2 = A B + C + D + F( ) + ABC DF
 
 
 

G =
g1 = B + C + D
f1 = A g1 + E( ) + A E g1

f2 = A g1 + F( ) + A F g1
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Representation: Boolean Network

 y1  y2   y3   y4

 y5   y6

 y7   y8

 y9   y10

 

y5 = H5 = y 1y2
y6 = H6 = y3 y4
y7 = H7 = y1y 6 + y2
y8 = H8 = y5 + y6
y9 = H9 = y7
y10 = H10 = y8

  

A Boolean network is designatedη = ( v y ,
v 

H ) where:
 v y = (y1 ,K , yn+m+r ) is a vector of variablesv 
H = (H1 ,K , Hn+m+r )  is a vector of functions

y1 ,K , yn are the primary input variables
yn+1,K , yn+r  are the intermediate variables
yn+r+1,K yn+m+r  are the primary output variables

yi = Hi (y1,K yn+m+r ) 

A Boolean network has an associated graph
which shows the function dependencies;
i.e., the edge (i, j) is present if yi ∈sup(H j ).
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Weak (or Algebraic) Division

Definition:  support of f, denoted sup( f ) = { set 
of all variables  v that occur in f as  v or  v }

Example:    f = A B + C

sup( f ) = { A, B, C }
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Weak (or Algebraic) Division

Definition:  support of f, denoted sup( f ) = { set 
of all variables  v that occur in f as  v or  v }

Example:    f = A B + C

sup( f ) = { A, B, C }

Definition:  we say that  f is orthogonal to  g,
f ⊥ g,  if  sup( f ) ∩ sup( g ) = φ

Example:    f = A + B g = C + D

∴ f ⊥ g since { A, B } ∩ { C, D } = φ  
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Weak Division - 2

We say that  g divides f weakly if there exist  h, r
such that   f  = gh + r where h ≠ φ and  g ⊥ h

Example: f  = ab + ac + d
g = b + c

f  = a(b + c) + d      h = a    r = d

We say that  g divides f evenly if r = φ

The quotient f / g is the largest  h such that
f = gh + r i.e.,  f  = ( f / g )g + r
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Computing  f / g

Given  f = { ci },  g = { ai } i.e., lists of sets of 
cubes

hi = { bj | ai bj ∈  f } ∀ i
i.e.,  all the multipliers of the cube ai in  g

that produce elements of f are in  hi

Theorem:  f / g  = ∩ hi    = h1 ∩ h2    . . . h| g | 
i = 1

| g |
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Weak Division Example

f = abc + abde + abh + bcd
g = c + de + h

Theorem says  f / g  =  f / c ∩ f / de ∩   f / h
f / c    = ab + bd

f / de   = ab
f / h    = ab

f / g   =   (ab + bd) ∩ ab ∩ ab = ab
f  = ab(c + de + h) + bcd

Time complexity: O( | f |  | g | ). | f | the number of 
cubes in f
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Types of Algebraic Divisors

Define divisors of  f as the set
D( f ) = { g |  f / g ≠ φ }

Define primary divisors of f as
P( f ) = { f / c  | c  is a cube }

Example:   f  = abc  + abde
f / a  = bc  + bde is a primary divisor

Every divisor of f is contained in a primary 
divisor.  If g divides f,   then g ⊆ p ∈ P( f )

g is termed “cube-free” if the only cube dividing 
g evenly is  1.
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Kernels and Divisors

Define the kernels of f as
K( f ) = { k | k ∈ P( f ),  k  is cube-free }

Example:  f  = abc + abde

f / a  = bc + bde is a primary divisor
but is not cube-free since  b is a
factor   f / a  = b(c + de)

f / ab  = c + de is a kernel
ab is the co-kernel

The co-kernel of a kernel is not unique.
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Examples

Consider
f  = acd  + bcd  + ae  +  be

DIVISOR TYPE?
f / a     = cd + e

f / c     = ad + bd

f / cd   = a + b

f / e     = a + b
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Common Divisors and Kernels

Goal of multi-level logic optimizer is to find 
common divisors of two (or more) functions 
f and  g

Theorem:  f and  g have a non-trivial common 
divisor  d ( d  ≠ cube )  if and only if there 
exist kernels

kf ∈ K( f ),  kg ∈ K( g ) such that
kf ∩ kg is non-trivial,  i.e., not a cube

∴ can use kernels of  f and  g to locate 
common  divisors
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Kernel1(  j,  g ) {
R =  g ;
/* n = number of literals */
for ( i = j + 1;  i ≤ n;  i = i + 1 )  {

if ( li in one or no terms ) continue ;
ce =  Max. literal cube evenly dividing  (g / li ) li ;
if ( lk not in ce,  for all  k ≤ i )

R =  R ∪ Kernel1( i, ( g / li ) / ce )
}
return( R ) ;

}

Algorithm to find All Kernels

Kernels( f )

Find cf so  f / cf is cube-free ;
K =  Kernel1( 0,  f / cf ) ;
if ( f is cube-free )

return(  f ∪ K ) ;    
return( K ) ;

{Presume ordering on literals}
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Kerneling Example
f  = abcd + abce + adgh + aegh + abde + acdeg + beh

co-kernel kernel

1 a(bc + gh) (d + e) + ade(b + cg) + beh
a (bc + gh) (d + e) + de(b + cg)
ab c(d + e) + de
abc d + e
abd c + e
ac b (d + e) + deg
acd b + eg
ace b + dg
ad b(c + e) + g(ce + h)
ade b + cg
adg ce + h
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Kerneling Illustrated

abcd + abce + adfg + aefg + adbe + acdef + begabcd + abce + adfg + aefg + adbe + acdef + beg

aa bb
cc

(a)(a)
cc

dd ee
(a)(a)

(a)(a) ac+d+gac+d+g
gg

d+ed+ecd+gcd+g
ff

ce+gce+g
ff

b+cfb+cf
ee

dd

b+dfb+df
ee

b+efb+ef
dd

cc

d+ed+e

c+ec+e

c+dc+d

bb

cc dd ee

bcd+ bce +dfg + efg + bde + cdef

ac (d + e) ac (d + e) –– already chosenalready chosen
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Pruning Condition and Example

If the largest cube factor ce contains an already 
selected literal, then terminate current branch
All kernels found by continuing have already been seen

f  = abc(d + e) (k + l) + agh + m

f / a  =  bc(d + e) (k + l) + gh

f / ab  =  c(d + e) (k + l)

(d + e) (k + l)

f / ac  =  b(d + e) (k + l)

a

b c

b already
selected
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Orchestration of Optimization Techniques

Technology-independent:

- two-level minimization
- selective collapsing
- algebraic decomposition
- restructuring for timing
- redundancy removal
- transduction
- global-flow

Technology-dependent:
- tree covering
- load buffering
- rule-based mapping
- signature analysis
- inverter phase 

assignment
- discrete sizing
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Logic optimization - summary

Current formulation of logic synthesis and optimization is the 
most common techniques for designing integrated circuits 
today

Has been the most successful design paradigm 1989 - present
Almost all digital circuits are touched by logic synthesis 
• Microprocessors (control portions/random glue logic ~ 20%)
• Application specific standard parts  (ASSPs)- 20 - 90%
• Application specific integrated circuits (ASICS) - 40 - 100%
Real logic optimization systems orchestrate optimizations
• Technology independent
• Technology dependent
• Application specific (e.g. datapath oriented)
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Computing  f / g

Given  f = { ci },  g = { ai }

1) Encode cubes ai ∈ g with unique integer 
codes, by assigning a unique bit position 
for every literal in  sup( g )
e.g., g = ab  +  e

110    001

2) Encode cubes cj ∈ f similarly
e.g., f = abc + abd  +  de

110      110      001

3) Sort  { ai , cj } by their codes
e.g., ab, abc, abd,  e,  de

110            001
h1 = c + d      h2 = d

Time 
complexity?


