Technology Independent Logic Optimization

Prof. Kurt Keutzer
EECS
University of California
Berkeley, CA

Thanks to R. Rudell, S. Malik

Outline

- Motivation for Multilevel
- Overview of Techniques
- Details on multilevel techniques

2-Level =>Programmable Logic Arrays (PLAs)

We can represent any Boolean function in a 2-level/SOP form
Any such representation can be implemented in a PLA

Early "Synthesis" Flow

Why Multilevel Combinational Circuits?

There are many functions that are too
"expensive" to implement in two-level form
Try 16-bit adder $\Rightarrow 32$ input lines and 2^{16} product terms!

2-level: control logic design multi-level: datapath logic or random logic

Two-Level versus Multilevel

Even simple functions expressed in 2-Level:

$$
\begin{aligned}
& f_{1}=A B+A C+A D \\
& f_{2}=\bar{A} B+\bar{A} C+\bar{A} E
\end{aligned}
$$

6 product terms which cannot be shared. 24 transistors in static CMOS

May be more efficient in multi-level:
Note that $B+C$ is a common term in f_{1} and f_{2}

$K=B+C$	3 Levels 20 transistors in static CMOS not counting inverters
$f_{1}=A K+A D$	
$f_{2}=\bar{A} K+\bar{A} E$	

Outline

- Motivation for Multilevel
- Overview of Techniques
- Details on multilevel techniques

RTL Design Flow

Logic Optimization

Perform a variety of transformations and optimizations Structural graph transformations

Boolean transformations

Mapping into a physical library

Reduce to Combinational Optimization

inputs
 outputs
input arrival times
input drive
output required times output load

Representation: Boolean Network

A Boolean network is designated $\eta=(\mathrm{y}, \mathrm{H})$ where:
$\stackrel{V}{v}=\left(y_{1}, K, y_{n+m+r}\right)$ is a vector of variables
$\mathrm{H}=\left(\mathrm{H}_{1}, \mathrm{~K}, \mathrm{H}_{\mathrm{n}+\mathrm{m}+\mathrm{r}}\right)$ is a vector of functions
y_{1}, K, y_{n} are the primary input variables
$\mathrm{y}_{\mathrm{n}+1}, \mathrm{~K}, \mathrm{y}_{\mathrm{n}+\mathrm{r}}$ are the intermediate variables
$\mathrm{y}_{\mathrm{n}+\mathrm{r}+1}, \mathrm{~K} \mathrm{y}_{\mathrm{n}+\mathrm{m}+\mathrm{r}}$ are the primary output variables
$y_{i}=H_{i}\left(y_{1}, K y_{n+m+r}\right)$
A Boolean network has an associated graph which shows the function dependencies; i.e., the edge (i, j) is present if $\mathrm{y}_{\mathrm{i}} \in \sup \left(\mathrm{H}_{\mathrm{j}}\right)$.

$$
\begin{aligned}
& \mathrm{y}_{5}=\mathrm{H}_{5}=\bar{y}_{1} \mathrm{y}_{2} \\
& \mathrm{y}_{6}=\mathrm{H}_{6}=\mathrm{y}_{3} \mathrm{y}_{4} \\
& \mathrm{y}_{7}=\mathrm{H}_{7}=\mathrm{y}_{1} \bar{y}_{6}+\mathrm{y}_{2} \\
& \mathrm{y}_{8}=\mathrm{H}_{8}=\mathrm{y}_{5}+\mathrm{y}_{6} \\
& \mathrm{y}_{9}=\mathrm{H}_{9}=\mathrm{y}_{7} \\
& \mathrm{y}_{10}=\mathrm{H}_{10}=\mathrm{y}_{8}
\end{aligned}
$$

Combinational Logic Optimization

Input:
Initial Boolean network
Timing characterization for the module

- input arrival times and drive factors
- output loading factors

Optimization goals

- output required times

Target library description
Output:
Minimum-area net-list of library gates which meets timing constraints

A very difficult optimization problem !

Modern Approach to Logic Optimization

Divide logic optimization into two subproblems:

- Technology-independent optimization
- determine overall logic structure
- estimate costs (mostly) independent of technology
- simplified cost modeling
- Technology-dependent optimization (technology mapping)
- binding onto the gates in the library
- detailed technology-specific cost model

Orchestration of various optimization/transformation
techniques for each subproblem

Formats

Boolean Network, Boolean equations
Generic library - technology independent

- Has standard functions - ND2, ND4, AOI22, pos-edgeFF
- only an estimate of timing

Actual technology library

- Represents logic functions and their physical characteristics of a library cells offered by a particular silicon vendor - e.g. TSMC
- E.g. captured in .lib file
- Contains complete logical, timing information

Logic Optimization

Tech.-Independent Optimization

Involves:
Minimizing two-level logic functions.
Finding common subexpressions.
Substituting one expression into another. Factoring single functions.
Factored versus Disjunctive forms
$f=a c+a d+b c+b d+a \bar{e}$
sum-of-products or disjunctive form

$$
f=(a+b)(c+d)+a \bar{e}
$$

factored form
multi-level or complex gate

Decomposition

G is a Boolean divisor of F if $F=G \cdot H+R$ for functions $H \neq 0, R \neq 0$

Searching for divisors which are common to many functions in the network
Decomposition:
identify divisors which are common to several functions introduce common divisor as a new node
re-express existing nodes using the new divisor
Technology-independent measure of cost to measure goodness
area cost: total number of literals
delay cost: levels of logic on the critical path

Division

- If $h \neq 0$, and h can be obtained using algebraic division, then g is an algebraic divisor of f. Otherwise, g is a Boolean divisor of f.
- Example:

$$
\begin{aligned}
& f=a d+a e+b c d+j \\
& g_{1}=a+b c \\
& g_{2}=a+b
\end{aligned}
$$

- Algebraic division $\mathrm{f} / / \mathrm{a}=\mathrm{d}+e, \mathrm{f} / /(\mathrm{bc})=\mathrm{d}$
- Also,
$\mathrm{f} / / \mathrm{a}=\mathrm{d}$ or $\mathrm{f} / / \mathrm{a}=\mathrm{e}$, i.e. algebraic division is not unique) $\mathrm{h}_{1}=$ $\mathrm{f} / / \mathrm{g}_{1}=\mathrm{d}, \mathrm{r}_{1}=a \mathrm{a}+\mathrm{j}$
- Boolean division: $h_{2}=f \div g_{2}=(a+c) d, r_{2}=a e+j$.
i.e. $f=(a+b)(a+c) d^{2}+a e+j$

Strong (or Boolean) Division

Given a function f to be strong divided by g Add an extra input to f corresponding to g, namely G and obtain function h as follows

$$
\begin{aligned}
& h_{D C}=G \bar{g}+\bar{G} g \\
& h_{O N}=f_{O N}-h_{D C} \\
& h_{O F F}=\overline{f_{O N}+h_{D C}}
\end{aligned}
$$

Minimize h using two-level minimizer

Algebraic vs. Boolean Methods

Algebraic techniques view equations as polynomials and attempt to factor equations or "divide" them
Do not exploit Boolean identities e.g., $a \bar{a}=0$
In algebraic substitution (or division) if a function $f=f(a, b, c)$ is divided by $g=g(a, b), a$ and b will not appear in f / g

Algebraic division: $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time
Boolean division: unmanageable number of divisors

Comparison of factorization

$$
f=a \bar{b}+a \bar{c}+b \bar{a}+b \bar{c}+c \bar{a}+c \bar{b}
$$

Algebraic factorization procedures

$$
f=a(\bar{b}+\bar{c})+\bar{a}(b+c)+b \bar{c}+c \bar{b}
$$

Boolean factorization produces

$$
f=(a+b+c)(\bar{a}+\bar{b}+\bar{c})
$$

Comparison

Substitution is the factoring of one node in the
Boolean Network (e.g. I) by another (e.g. r)
Algebraic substitution of l into r fails
Boolean substitution yields results

$$
\begin{aligned}
& l=(b \bar{f}+\bar{b} f)(a+e)+\bar{a} \bar{e}(\bar{b} \bar{f}+b f) \\
& r=(b \bar{f}+\bar{b} f)(\bar{a}+\bar{e})+a e(\bar{b} \bar{f}+b f)
\end{aligned}
$$

After resub:

$$
\begin{aligned}
& r=a(\bar{e} \bar{l}+e l)+\bar{a}(\bar{e} l+e \bar{l}) \\
& l=a(e r+\bar{e} \bar{r})+\bar{a}(\bar{e} r+e \bar{r})
\end{aligned}
$$

Algebraic Decomposition

Algebraic approximation (informal definition)

- simplify Boolean function using two-level minimization
- treat result as a polynomial; i.e.,
x_{i} and $\overline{\mathrm{x}}_{\mathrm{i}}$ are different variables
i.e., $x_{i} \cdot \bar{x}_{i} \neq 0$ and $x_{i} \cdot x_{i} \neq x_{i}$
- identify common divisors as algebraic divisors of the polynomials

Algebraic Decomposition

Algebraic approximation (informal definition)

- simplify Boolean function using two-level minimization
- treat result as a polynomial; i.e.,
x_{i} and $\overline{\mathrm{x}}_{\mathrm{i}}$ are different variables
i.e., $x_{i} \cdot \bar{x}_{i} \neq 0$ and $x_{i} \cdot x_{i} \neq x_{i}$
identify common divisors as algebraic divisors of the polynomials
Motivation
- manipulating polynomials is fast (linear time algorithms)
- \# algebraic divisors still exponential, but usually manageable
- Ioss of optimality, but experimentally shows good results
- interleave Boolean simplification procedures to improve results

Algebraic Decomposition

Algebraic approximation (informal definition)

- simplify Boolean function using two-level minimization
- treat result as a polynomial; i.e.,

$$
\begin{aligned}
& x_{i} \text { and } \bar{x}_{i} \text { are different variables } \\
& \text { i.e., } x_{i} \cdot \bar{x}_{i} \neq 0 \text { and } x_{i} \cdot x_{i} \neq x_{i}
\end{aligned}
$$

identify common divisors as algebraic divisors of the polynomials

Techniques

- single-cube algebraic divisors (common-cube decomposition)
- multiple-cube algebraic divisors (kernel decomposition)

Decomposition?

$$
\begin{gathered}
F=a d e+b d e+c d e+f \\
G=b g+c g+d g+a e f \\
H=a e g+b c
\end{gathered}
$$

How can this logic be further simplified?

Common Cube Decomposition

Finds algebraic divisors which are single cubes
"Common cubes" are easy to detect

Greedy algorithm:

- enumerate all maximal common cubes
- select cube which saves the most literals
- add node to the network and re-express affected nodes
- repeat until no common cubes remain

References: [Dietmeyer-69], [Brayton-82], [Rudell-89]

Kernel Decomposition

cube-free: an expression is cube-free if no literal appears in every cube
kernel: A kernel of an expression is a cube-free divisor which is not contained in any other cube-free divisor (e.g., $a+b+c$ is a kernel of F, while $b+c$ is not a kernel because it is contained in $a+b+c$)
Kernels are useful because:

- if f and g share a common multiple-cube divisor, then the intersection of some kernel from f and some kernel from g yields a common multiple- cube divisor [Brayton-82].
practical algorithms exist to find intersections of kernels [Rudell-89].
kernel decomposition finds solutions which are difficult to find using only common-cube decomposition

Selective Collapsing

"Collapse" nodes into their fanout to increase the size of each node

Summary of Typical Recipe

Selective-collapse

Simplify: Two-level minimization at Boolean network node

Structuring/Algebraic decomposition

Local Boolean optimizations

Tree-covering for gate selection
Load-buffering for fanout-tree construction
Local transformation improvement of circuit structure

Restructure and iterate if timing constraints not met

Outline

- Motivation for Multilevel
- Overview of Techniques
- Details on multilevel techniques

Decomposition - details

$$
F=\left\{\begin{array}{l}
f_{1}=A B+A C+A D+A E+\bar{A} \bar{B} \bar{C} \bar{D} \bar{E} \\
f_{2}=\bar{A} B+\bar{A} C+\bar{A} D+\bar{A} F+\bar{A} \bar{B} \bar{C} \bar{D} \bar{F}
\end{array}\right.
$$

Factor F

$$
F=\left\{\begin{array}{l}
f_{1}=A(B+C+D+E)+\bar{A} \bar{B} \bar{C} \bar{D} \bar{E} \\
f_{2}=\bar{A}(B+C+D+F)+\bar{A} \bar{B} \bar{C} \bar{D} \bar{F}
\end{array}\right.
$$

Extract common expression

$$
G=\left\{\begin{array}{l}
g_{1}=B+C+D \\
f_{1}=A\left(g_{1}+E\right)+\bar{A} \bar{E} \overline{g_{1}} \\
f_{2}=\bar{A}\left(g_{1}+F\right)+\bar{A} \bar{F} \overline{g_{1}}
\end{array}\right.
$$

Representation: Boolean Network

A Boolean network is designated $\eta=(\mathrm{y}, \mathrm{H})$ where:
$\stackrel{V}{v}=\left(y_{1}, K, y_{n+m+r}\right)$ is a vector of variables
$\mathrm{H}=\left(\mathrm{H}_{1}, \mathrm{~K}, \mathrm{H}_{\mathrm{n}+\mathrm{m}+\mathrm{r}}\right)$ is a vector of functions
y_{1}, K, y_{n} are the primary input variables
$\mathrm{y}_{\mathrm{n}+1}, \mathrm{~K}, \mathrm{y}_{\mathrm{n}+\mathrm{r}}$ are the intermediate variables
$\mathrm{y}_{\mathrm{n}+\mathrm{r}+1}, \mathrm{~K} \mathrm{y}_{\mathrm{n}+\mathrm{m}+\mathrm{r}}$ are the primary output variables
$y_{i}=H_{i}\left(y_{1}, K y_{n+m+r}\right)$
A Boolean network has an associated graph which shows the function dependencies; i.e., the edge (i, j) is present if $\mathrm{y}_{\mathrm{i}} \in \sup \left(\mathrm{H}_{\mathrm{j}}\right)$.

$$
\begin{aligned}
& \mathrm{y}_{5}=\mathrm{H}_{5}=\bar{y}_{1} \mathrm{y}_{2} \\
& \mathrm{y}_{6}=\mathrm{H}_{6}=\mathrm{y}_{3} \mathrm{y}_{4} \\
& \mathrm{y}_{7}=\mathrm{H}_{7}=\mathrm{y}_{1} \bar{y}_{6}+\mathrm{y}_{2} \\
& \mathrm{y}_{8}=\mathrm{H}_{8}=\mathrm{y}_{5}+\mathrm{y}_{6} \\
& \mathrm{y}_{9}=\mathrm{H}_{9}=\mathrm{y}_{7} \\
& \mathrm{y}_{10}=\mathrm{H}_{10}=\mathrm{y}_{8}
\end{aligned}
$$

Weak (or Algebraic) Division

Definition: support of f , denoted $\sup (f)=\{$ set of all variables v that occur in f as \bar{v} or v \}
Example: $\boldsymbol{f}=\boldsymbol{A} \overline{\boldsymbol{B}}+\boldsymbol{C}$

$$
\sup (f)=\{A, B, C\}
$$

Weak (or Algebraic) Division

Definition: support of f , denoted $\sup (f)=\{$ set of all variables v that occur in f as \bar{v} or v \}
Example: $\boldsymbol{f}=\boldsymbol{A} \overline{\boldsymbol{B}}+\boldsymbol{C}$

$$
\sup (f)=\{A, B, C\}
$$

Definition: we say that f is orthogonal to g, $f \perp g$, if $\sup (f) \cap \sup (g)=\phi$

Example: $\boldsymbol{f}=\boldsymbol{A}+\boldsymbol{B} \quad \boldsymbol{g}=\boldsymbol{C}+\boldsymbol{D}$

$$
\therefore f \perp g \text { since }\{A, B\} \cap\{C, D\}=\phi
$$

Weak Division-2

We say that g divides f weakly if there exist h, r such that $f=g h+r$ where $h \neq \phi$ and $g \perp h$
Example: $\quad f=a b+a c+d$

$$
g=b+c
$$

$$
f=a(b+c)+d \quad h=a \quad r=d
$$

We say that g divides f evenly if $r=\phi$

The quotient f / g is the largest h such that $f=g h+r$ i.e., $f=(f / g) g+r$

Computing f / g

Given $f=\left\{c_{i}\right\}, g=\left\{a_{i}\right\}$ i.e., lists of sets of cubes

$$
h_{i}=\left\{b_{j} \mid a_{i} b_{j} \in f\right\} \forall i
$$

i.e., all the multipliers of the cube a_{i} in g that produce elements of f are in $\boldsymbol{h}_{\boldsymbol{i}}$

Theorem: $f / g=\bigcap_{i=1}^{|g|} h_{i}=h_{1} \cap h_{2} \ldots h_{|g|}$

Weak Division Example

$$
\begin{aligned}
& f=a b c+a b d e+a b h+b c d \\
& g=c+d e+h
\end{aligned}
$$

Theorem says $f / g=f / c \cap f / d e \cap f / h$

$$
\begin{aligned}
& f / c=a b+b d \\
& f / d e=a b \\
& f / h=a b \\
& f / g=(a b+b d) \cap a b \cap a b=a b \\
& f=a b(c+d e+h)+b c d
\end{aligned}
$$

Time complexity: $\mathbf{O}(|f||g|) .|f|$ the number of cubes in f

Types of Algebraic Divisors

Define divisors of f as the set

$$
D(f)=\{g \mid f / g \neq \phi\}
$$

Define primary divisors of f as $P(f)=\{f / c \mid c$ is a cube $\}$
Example: $f=a b c+a b d e$

$$
f / a=b c+b d e \text { is a primary divisor }
$$

Every divisor of f is contained in a primary divisor. If g divides f, then $g \subseteq p \in P(f)$
g is termed "cube-free" if the only cube dividing g evenly is 1 .

Kernels and Divisors

Define the kernels of f as
$K(f)=\{k \mid k \in P(f), k$ is cube-free $\}$

Example: $f=a b c+a b d e$
$f / a=b c+b d e$ is a primary divisor but is not cube-free since b is a factor $f / a=b(c+d e)$
$f / a b=c+d e$ is a kernel $a b$ is the co-kernel

The co-kernel of a kernel is not unique.

Examples

Consider

$$
f=a c d+b c d+a e+b e
$$

DIVISOR TYPE?

$$
\begin{aligned}
& f / a=c d+e \\
& f / c=a d+b d \\
& f / c d=a+b \\
& f / e=a+b
\end{aligned}
$$

Common Divisors and Kernels

Goal of multi-level logic optimizer is to find common divisors of two (or more) functions f and g

Theorem: f and g have a non-trivial common divisor $d(d \neq$ cube) if and only if there exist kernels
$k_{f} \in K(f), k_{g} \in K(g)$ such that
$k_{f} \cap k_{g}$ is non-trivial, i.e., not a cube
\therefore can use kernels of f and g to locate common divisors

Algorithm to find All Kernels

```
                                    Find c}\mp@subsup{c}{f}{}\mathrm{ so }f/\mp@subsup{c}{f}{}\mathrm{ is cube-free ;
    Kernels(f)
        K = Kernel1( 0, f/cf
        if (f}\mathrm{ is cube-free )
        return( f}\cupK)
    Kernel1( j, g) { return(K);
        R = g;
        /* n = number of literals */
        for (i=j+1;i\leqn;i=i+1) {
        if ( }\mp@subsup{l}{i}{}\mathrm{ in one or no terms ) continue;
        c
        if ( }\mp@subsup{l}{k}{}\mathrm{ not in }\mp@subsup{c}{e}{}\mathrm{ , for all }k\leqi
            R=R\cupKernel1(i,(g/l li)/c
    }
    return(R);
    {Presume ordering on literals}
Kurt Keutzer

\section*{Kerneling Example}
\begin{tabular}{cl}
\multicolumn{2}{c}{\(f=a b c d+a b c e+a d g h+a e g h+a b d e+a c d e g+b e h\)} \\
co-kernel & \multicolumn{1}{c}{ kernel } \\
\cline { 1 - 1 } 1 & \(a(b c+g h)(d+e)+a d e(b+c g)+b e h\) \\
\(a\) & \((b c+g h)(d+e)+d e(b+c g)\) \\
\(a b\) & \(c(d+e)+d e\) \\
\(a b c\) & \(d+e\) \\
\(a b d\) & \(c+e\) \\
\(a c\) & \(b(d+e)+d e g\) \\
\(a c d\) & \(b+e g\) \\
\(a c e\) & \(b+d g\) \\
\(a d\) & \(b(c+e)+g(c e+h)\) \\
\(a d e\) & \(b+c g\) \\
\(a d g\) & \(c e+h\)
\end{tabular}

\section*{Kerneling Illustrated}
\[
a b c d+a b c e+a d f g+a e f g+a d b e+a c d e f+b e g
\]


\section*{Pruning Condition and Example}

If the largest cube factor \(c_{e}\) contains an already selected literal, then terminate current branch

All kernels found by continuing have already been seen
\[
\begin{aligned}
& f=a b c(d+e)(k+l)+a g h+m \\
& \quad a\lceil
\end{aligned}
\]
\(f / a=b c(d+e)(k+l)+g h\)

\[

\]

\section*{Orchestration of Optimization Techniques}

Technology-independent:
- two-level minimization
- selective collapsing
- algebraic decomposition
- restructuring for timing
- redundancy removal
- transduction
- global-flow

Technology-dependent:
- tree covering
- load buffering
- rule-based mapping
- signature analysis
- inverter phase assignment
- discrete sizing

\section*{Logic optimization - summary}

Current formulation of logic synthesis and optimization is the most common techniques for designing integrated circuits today
Has been the most successful design paradigm 1989-present
Almost all digital circuits are touched by logic synthesis
- Microprocessors (control portions/random glue logic ~20\%)
- Application specific standard parts (ASSPs)- 20-90\%
- Application specific integrated circuits (ASICS) - 40-100\%

Real logic optimization systems orchestrate optimizations
- Technology independent
- Technology dependent
- Application specific (e.g. datapath oriented)

\section*{Computing \(f / g\)}

Given \(\boldsymbol{f}=\left\{c_{i}\right\}, g=\left\{a_{i}\right\}\)
1) Encode cubes \(a_{i} \in g\) with unique integer codes, by assigning a unique bit position for every literal in \(\sup (g)\)
e.g., \(\quad g=a b+e\)
\[
110 \quad 001
\]
2) Encode cubes \(c_{j} \in f\) similarly \(\begin{array}{cc}\text { e.g., } & f=a b c+a b d+d e \\ 110 & 110\end{array}\)

3) Sort \(\left\{a_{i}, c_{j}\right\}\) by their codes
e.g., \(\underset{110}{a b, a b c, a b d} \underset{001}{e, d e}\)
\[
h_{1}=c+d \quad h_{2}=d
\]```

