Technology Independent Logic Optimization

Prof. Kurt Keutzer EECS University of California Berkeley, CA

Thanks to R. Rudell, S. Malik

Algebraic techniques view equations as polynomials and attempt to factor equations or "divide" them Do not exploit Boolean identities e.g., $a \overline{a} = 0$ In algebraic substitution (or division) if a function f = f(a, b, c) is divided by g = g(a, b), a and bwill <u>not</u> appear in f/gAlgebraic division: O(n log n) time Boolean division: unmanageable number of divisors

Comparison

Substitution is the factoring of one node in the Boolean Network (e.g. *I*) by another (e.g. *r*)

Algebraic substitution of *t* into *r* fails

Boolean substitution yields results

 $l = (b\overline{f} + \overline{b}f) (a+e) + \overline{a}\overline{e}(\overline{b}\overline{f} + bf)$ $r = (b\overline{f} + \overline{b}f) (\overline{a} + \overline{e}) + a\overline{e}(\overline{b}\overline{f} + bf)$

After resub:

 $r = a(\overline{el} + el) + \overline{a}(\overline{el} + e\overline{l})$ $l = a(er + \overline{er}) + \overline{a}(\overline{er} + e\overline{r})$

Kurt Keutzer

Define divisors of f as the set $D(f) = \{ g \mid f/g \neq \phi \}$ Define primary divisors of f as $P(f) = \{ f/c \mid c \text{ is a cube} \}$ Example: f = abc + abde f/a = bc + bde is a primary divisor Every divisor of f is contained in a primary divisor. If g divides f, then $g \subseteq p \in P(f)$ g is termed "cube-free" if the only cube dividing g evenly is 1.

Kurt Keutzer

Kerneling Example		
f = abcd + abce + adgh + aegh + abde + acdeg + beh		
<u>co-kernel</u>	<u>kernel</u>	
1	a(bc + gh) (d + e) + ade(b + cg) + beh	
а	(bc + gh) (d + e) + de(b + cg)	
ab	c(d+e)+de	
abc	d + e	
abd	<i>c</i> + <i>e</i>	
ac	b(d+e)+deg	
acd	b + eg	
ace	b + dg	
ad	b(c+e)+g(ce+h)	
ade	b + cg	
adg	ce + h	

