Technology Independent
Logic Optimization

Prof. Kurt Keutzer
EECS
University of California
Berkeley, CA

Thanks to R. Rudell, S. Malik

N

.

Outline

* Motivation for Multilevel
* Overview of Techniques

» Details on multilevel techniques

Kurt Keutzer

AN

Copyright © 2001 K. Keutzer

2-Level =>Programmable Logic Arrays (PLAS)

W? can represent any Boolean function in a 2-level/SOP
orm

Any such representation can be implemented in a PLA

. i —T5
4inputs 172
B-—E
el 3 AR H 5] 4
1l Il 11
p‘LJ - szI WLJ P PskJ WLJM
5 o /3 outputs
0 e
= o

6 product terms

Kurt Keutzer

N

.

Early “Synthesis” Flow

F1I=B+D+AC+AC
SOP logic

optimization

(o) |
physical 02
design

Kurt Keutzer

AN

Copyright © 2001 K. Keutzer

Why Multilevel Combinational Circuits?

There are many functions that are too
“expensive” to implement in two-level form

Try 16-bit adder = 32 input lines and 216
product terms!

2-level: control logic design
multi-level: datapath logic or random logic

Kurt Keutzer

N

.

Two-Level versus Multilevel

Even simple functions expressed in 2-Level:

fi =AB+ AC + AD

f, = AB+ AC+ AE
6 product terms which cannot be shared.
24 transistors in static CMOS

May be more efficient in multi-level:
Note that B + C is a common term in f; and f,

K=B+C 3 Levels

20 transistors in static CMOS
f, = AK+ AD not counting inverters
=

f, = AK+ AE

Kurt Keutzer

AN

Copyright © 2001 K. Keutzer

/ Outline

* Motivation for Multilevel
* Overview of Techniques

* Details on multilevel techniques

Kurt Keutzer

N

RTL Design Flow

Module
Generators

netlist
Library \

logic
B o optimization

netlist

K Kurt Keutzer

AN

Copyright © 2001 K. Keutzer

Logic Optimization

@ m Perform a variety of

logic
optimization

smaller, faster
less power

transformations and
optimizations
Structural graph
transformations
Boolean transformations
Mapping into a physical library

N

.

Kurt Keutzer 9
Reduce to Combinational Optimization
B
Flip-flops
l l I WY Y
0 »Y T g
. o Py i}
inputs Combinational i outputs
Logic
o i}
input arrival times output required times
input drive output load
Kurt Keutzer 10

AN

Copyright © 2001 K. Keutzer

Representation: Boolean Network

ys =Hs =%y,
A Boolean network is designated =(y, H) where: Y6 = g" ~YsYa N
§:(y1 K ,yomsr) IS @ vector of variables AR ARE

] . =H, = +
H=(H,.K,H,,..,) is a vector of functions %~ I RGN
Yo =Ho =Y

Yio =Hjp =y

y;.K ,y, are the primary input variables

Vos1,K » Vo, are the intermediate variables
Vosrs1-K Yarmer @re the primary output variables

Yi = Hi (YI 9K Yn+m+r)

A Boolean network has an associated graph
which shows the function dependencies;
i.e., the edge (i,]) is present if y, esup(H;).

Kurt Keutzer

N

.

Combinational Logic Optimization

Input:
Initial Boolean network
Timing characterization for the module
- input arrival times and drive factors
- output loading factors
Optimization goals
- output required times
Target library description
Output:

Minimume-area net-list of library gates which meets timing
constraints

A very difficult optimization problem !

Kurt Keutzer

AN

Copyright © 2001 K. Keutzer

Modern Approach to Logic Optimization

Divide logic optimization into two subproblems:

» Technology-independent optimization
- determine overall logic structure

- estimate costs (mostly) independent of
technology

- simplified cost modeling

» Technology-dependent optimization (technology
mapping)
- binding onto the gates in the library
- detailed technology-specific cost model

Orchestration of various optimization/transformation
techniques for each subproblem

Kurt Keutzer 13

N

.

Formats

Boolean Network, Boolean equations
Generic library — technology independent

* Has standard functions — ND2, ND4, AOI22, pos-edge-
FF

+ only an estimate of timing
Actual technology library

* Represents logic functions and their physical
characteristics of a library cells offered by a particular
silicon vendor — e.g. TSMC

* E.g. captured in .lib file

+ Contains complete logical, timing information

Kurt Keutzer 14

AN

Copyright © 2001 K. Keutzer

Logic Optimization

2-level
Logic opt

tech multilevel
> independent Logic opt

dependent .
> Generic

Library

Kurt Keutzer 15

N

_

Tech.-Independent Optimization

Involves:
Minimizing two-level logic functions.
Finding common subexpressions.
Substituting one expression into another.
Factoring single functions.

Factored versus Disjunctive forms
f=ac+ad+bc+bd+ae

sum-of-products or disjunctive form

f=(a+b)(c+d)+ae
factored form
multi-level or complex gate

Kurt Keutzer 16

2N

Copyright © 2001 K. Keutzer

Decomposition

Gis a Boolean divisor of F if F = G-H + R for functions H=0, R#0

Searching for divisors which are common to many functions in

the network
Decomposition:

identify divisors which are common to several functions
introduce common divisor as a new node

re-express existing nodes using the new divisor
Technology-independent measure of cost to measure goodness

area cost: total number of literals

delay cost: levels of logic on the critical path

N

.

Kurt Keutzer 17
Division
* Ifh=0, and h can be obtained using algebraic division,
then g is an algebraic divisor of f. Otherwise, g is a
Boolean divisor of f.
* Example:
=ad+ae+bcd+j
g,=a+bc
g,=a+b
» Algebraic division f//la=d + e, f//(bc) =d
* Also,
f/la=d orf/la = e, i.e. algebraic division is not unique) h, =
fllg;=d, ry=ae +]j
* Boolean division: h,=f+g,=(a+c)d, r,=ae +]j.
i.e. f=(atb)(a+c)d + ae +j
Kurt Keutzer 18

AN

Copyright © 2001 K. Keutzer

Strong (or Boolean) Division

Given a function f to be strong divided by g

Add an extra input to f corresponding to g,
namely G and obtain function /4 as follows

Q&‘
P

Il
~
=)
P

I
>
i~
9}

Minimize & using two-level minimizer

Kurt Keutzer

N

.

Algebraic vs. Boolean Methods

Algebraic techniques view equations as
polynomials and attempt to factor equations or
“divide” them

Do not exploit Boolean identities e.g., a a=10

In algebraic substitution (or division) if a function
f=f(a, b, ¢) is divided by g=g(a, b), a and b
will not appearinf/g

Algebraic division: O(n log n) time

Boolean division: unmanageable number of
divisors

Kurt Keutzer

20

AN

Copyright © 2001 K. Keutzer

Comparison of factorization

f=ab+ac+ba+bc+ca+ch
Algebraic factorization procedures

f=ab+c)ta(b+c)+bc+ch
Boolean factorization produces

f=(a+b+c)a+b+c)

Kurt Keutzer 21

N

.

Comparison

Substitution is the factoring of one node in the
Boolean Network (e.g. /) by another (e.g. r)

Algebraic substitution of / into r fails
Boolean substitution yields results

I=bf+bf) (ate)+ae(bf+bf)

r=(bf+bf) (a+e)+ae(bf+bf)
After resub: _ _

r=a(el +el)y+a(el +el)

Il =a(er +er)y+a(er+er)

Kurt Keutzer 22

AN

Copyright © 2001 K. Keutzer

Algebraic Decomposition

Algebraic approximation (informal definition)

- simplify Boolean function using two-level minimization
- treat result as a polynomial; i.e.,

x; and x; are different variables
i.e., x;-X; #0 and x; -x; # x;

- identify common divisors as algebraic divisors of the
polynomials

N

.

Kurt Keutzer 23
Algebraic Decomposition
Algebraic approximation (informal definition)
- simplify Boolean function using two-level minimization
- treat result as a polynomial; i.e.,
x; and x; are different variables
e, x;-X; #0 and x; - x; # x;
- identify common divisors as algebraic divisors of the
polynomials
Motivation
- manipulating polynomials is fast (linear time algorithms)
- # algebraic divisors still exponential, but usually
manageable
- loss of optimality, but experimentally shows good results
- interleave Boolean simplification procedures to improve
results
Kurt Keutzer 24

AN

Copyright © 2001 K. Keutzer

Algebraic Decomposition

Algebraic approximation (informal definition)

- simplify Boolean function using two-level minimization
- treat result as a polynomial; i.e.,

x; and x; are different variables
ie., x;-X; 20 and x; - x; # X

- identify common divisors as algebraic divisors of the
polynomials

Techniques

- single-cube algebraic divisors (common-cube
decomposition)

- multiple-cube algebraic divisors (kernel decomposition)

Kurt Keutzer 25

N

.

Decomposition?

F=ade+bde+cde+f
G =bg+tcg+dg+taef
H=aeg+bc

How can this logic be further simplified?

Kurt Keutzer 26

AN

Copyright © 2001 K. Keutzer

Common Cube Decomposition

F=ade+bde+cde+f
G =bg+tcg+tdgtaef
H=aeg+bc

F=Xd+bde+c de+f
G =bg+tcg+dg+Xf
H=Xg+bc

X=ae

Finds algebraic divisors which are single cubes

"Common cubes" are easy to detect
Greedy algorithm:

— enumerate all maximal common cubes
— select cube which saves the most literals

— add node to the network and re-express affected
nodes

— repeat until no common cubes remain

References: [Dietmeyer-69], [Brayton-82], [Rudell-89]

Kurt Keutzer 27
F=ade+bde+cde+f F=(a+b+c)de+f F=(@+X)de+f
G =bgtcgt+tdgtaef | —» G=(b+c+d)g+aef G=(X+d)g+aef
H=aeg+bc H=aeg+bc H=aeg+bc
X=b+c
cube-free: an expression is cube-free if no literal appears in every cube
kernel: A kernel of an expression is a cube-free divisor which is not contained in
any other cube-free divisor (e.g., a + b + ¢ is a kernel of F, while b + c is not a
kernel because it is contained in a + b + ¢)
Kernels are useful because:
- if fand g share a common multiple-cube divisor, then the intersection of
some kernel from f and some kernel from g yields a common multiple- cube
divisor [Brayton-82].
- practical algorithms exist to find intersections of kernels [Rudell-89].
- kernel decomposition finds solutions which are difficult to find using only
common-cube decomposition
Kurt Keutzer 28

Copyright © 2001 K. Keutzer

Selective Collapsing

"Collapse" nodes into their fanout to increase the size of each node

f=ah+bh'+cd
g=bh
h=ac+d

l collapse h

f=a
g=b

(ac+d)+b(@d+c'd)+cd
(ac+d)

l simplify

f=a
g=a

ctad+abd+bc'd+cd
bc+bd'

Kurt Keutzer

Goals:

- remove bad initial
structure

- reduce logic level depth

- expose further
optimization opportunities

29

N

.

Summary of Typical Recipe

Selective-collapse

Simplify: Two-level minimization at Boolean network

node

Technology
Independent
Optimization

Structuring/Algebraic decomposition

Local Boolean optimizations

Tree-covering for gate selection

Load-buffering for fanout-tree construction

Technology

Mapping

Local transformation improvement of circuit structure

Restructure and iterate if timing constraints not met

Kurt Keutzer

30

AN

Copyright © 2001 K. Keutzer

/ Outline

* Motivation for Multilevel
* Overview of Techniques

* Details on multilevel techniques

Kurt Keutzer

N

Decomposition - details

AN

F—{ fi =AB+ AC+AD+ AE+ ABCDE

Factor F
{f, =~ A(B+C+D+E)+ ABCDE
F=

Extract common expression

g B+C+D
Gz{fl =A(g, + Ey+ AEg,
f, = A(g, +F)+ AFg,

K Kurt Keutzer

Copyright © 2001 K. Keutzer

Representation: Boolean Network

A Boolean network is designated =(y, H) where:

&: (51K , Yoemes) i @ vector of variables
H=(H,.K,H,,...) is a vector of functions

y;.K ,y, are the primary input variables

Vos1,K » Vo, are the intermediate variables
Yoiri1-K Yoimsr a@re the primary output variables

Yi = Hi (YI 9K Yn+m+r)

A Boolean network has an associated graph
which shows the function dependencies;
i.e., the edge (i,]) is present if y, esup(H;).

Kurt Keutzer

ys =Hs; =3y,

Yo = He =34

Y, =H; =y +Y,
ys =Hg =ys +¥s
Yo =Hy =y,

Yio =Hjp =y

N

.

Weak (or Algebraic) Division

Definition: support of f, denoted sup(f) = { set
of all variables v that occurinfas v or v }

Example: f=AB+C
sup(f)=1{A4,B, C}

Kurt Keutzer

34

Copyright © 2001 K. Keutzer

Weak (or Algebraic) Division

Definition: support of f, denoted sup(f) = { set
of all variables v that occurinfas v or v }

Example: f=4 B+C
sup(f)={4, B, C}

Definition: we say that f is orthogonal to g,
fLg, if sup(f) Nsup(g)=¢

Example: f=A4+B g=C+D
.. flgsince {4, B}n{C,D}=¢

Kurt Keutzer

35

N

.

Weak Division - 2

We say that g divides f weakly if there exist h, r
suchthat f=gh+r where h=¢ and g L h

Example: f=ab+ac+d

g=b+c

f=ab+c)+d h=a r=d
We say that g divides f evenly if r=¢

The quotient f/g is the largest i such that
f=gh+r ie., f=(f/g)g+r

Kurt Keutzer

36

AN

Copyright © 2001 K. Keutzer

/ Computing /g

Given f={c; }, g={a;} i.e., lists of sets of
cubes
h;={b;jla;bje f}Vi
i.e., all the multipliers of the cube «; in g
that produce elements of f are in 4,

Fq
Theorem: f/g = (M h; = hynh, ... h,
i=1

Kurt Keutzer

37

AN

N

W

eak Division Example

f=abc + abde + abh + bcd
g=c+tde+h

Theorem says f/g = f/c n f/de N f/h
f/¢ = ab+bd
f/de = ab
f/’h = ab

f/g = (ab+bd) N ab N ab = ab

f = ab(c +de+ h) + bcd

Time complexity: O(|f| |g|)- |f| the number of
cubes in f

i

.

Kurt Keutzer

Copyright © 2001 K. Keutzer

Types of Algebraic Divisors

Define divisors of f as the set
D(f)={glf/g=¢}

Define primary divisors of f as
P(f)={f/c |c is acube}

Example: f = abc + abde
f/a = bc + bde is a primary divisor

Every divisor of fis contained in a primary
divisor. If g divides f, thengc p e P(f)

g is termed “cube-free” if the only cube dividing
g evenlyis 1.

Kurt Keutzer

39

N

.

Kernels and Divisors

Define the kernels of f as
K(f)={ k|k e P(f), k is cube-free }

Example: f = abc + abde

f/a = bc+bde is aprimary divisor
but is not cube-free since b is a
factor f/a = b(c +de)

f/ab = ¢ +de is akernel
ab is the co-kernel

The co-kernel of a kernel is not unique.

Kurt Keutzer

40

AN

Copyright © 2001 K. Keutzer

Examples

Consider

f = acd + bcd + ae + be

DIVISOR TYPE?
f/a =cd+e
f/c¢ = ad+bd
f/cd = a+b
f/e =a+b
Kurt Keutzer 41

N

.

Common Divisors and Kernels

Goal of multi-level logic optimizer is to find
common divisors of two (or more) functions

fand g

Theorem: f and g have a non-trivial common
divisor d (d #cube) if and only if there
exist kernels

k. e K(f), k, € K(g) such that
ky Nk, is non-trivial, i.e., not a cube

. can use kernels of f and g to locate
common divisors

Kurt Keutzer 42

AN

Copyright © 2001 K. Keutzer

Algorithm to find All Kernels

Find ¢, so f/c¢, is cube-free ;
K = Kernel1(0, f/c¢;);
Kernels(f) if (f is cube-free)
return(f U K);
Kernel1(j, g){ return(K) ;
R = g;
I* n = number of literals */
for(i=j+1; i< mn; i=i+1) {
if (/; in one or no terms) continue ;
¢, = Max. literal cube evenly dividing (g/1;) [;;
if (/, notin ¢, forall k< i)
R =R v Kernel1(i,(g/l;)/c,)

return(R) ; {Presume ordering on literals}

Kurt Keutéer

43

N

.

Kerneling Example

f = abcd + abce + adgh + aegh + abde + acdeg + beh
co-kernel kernel

a(bc +gh) (d +e) + ade(b + cg) + beh

a (bc +gh) (d +e) +de(b + cg)
ab c(d+e) +de

abc d+e

abd cte

ac b(d+e) +deg

acd b+eg

ace b +dg

ad b(c+e) +g(ce+h)

ade b+cg

adg ceth

Kurt Keutzer

44

AN

Copyright © 2001 K. Keutzer

Kerneling lllustrated

abcd + abce + adfg + aefg + adbe + acdef + beg

‘ bcd+ bce +dfg + efg + bde + cdef

c
a b (@)

> c a It Jo @l e
crﬂe FTe ng cd+g d+e (@) ac+d+g

d+e |c+td btef b+df b+cf cetg

cte ac (d + e) - already chosen

Kurt Keutzer

45

N

.

Pruning Condition and Example

If the largest cube factor ¢, contains an already
selected literal, then terminate current branch

All kernels found by continuing have already been seen

f=abcd+e) (k+1)+agh+m
a

f/a = be(d+e) (k+1)+gh
I

b ¢l
f/ab = c(d+e) (k+1) f/ac = b(d+e) (k+])
~N b already
(d+e) 1(k”) selected

Kurt Keutzer

46

AN

Copyright © 2001 K. Keutzer

Orchestration of Optimization Techniques

Technology-independent: Technology-dependent:

- two-level minimization - tree covering

. . - load buffering
- selective collapsing - rule-based mapping

- algebraic decomposition - signature analysis

- restructuring for timing - inverter phase

- redundancy removal assignment

. - d' t ..
- transduction iscrete sizing

- global-flow

Kurt Keutzer

47

N

.

Logic optimization - summary

Current formulation of logic synthesis and optimization is the
most common techniques for designing integrated circuits
today

Has been the most successful design paradigm 1989 - present
Almost all digital circuits are touched by logic synthesis

* Microprocessors (control portions/random glue logic ~ 20%)
» Application specific standard parts (ASSPs)- 20 - 90%

« Application specific integrated circuits (ASICS) - 40 - 100%
Real logic optimization systems orchestrate optimizations

* Technology independent

» Technology dependent

» Application specific (e.g. datapath oriented)

Kurt Keutzer

48

AN

Copyright © 2001 K. Keutzer

Computing f/g

Given f={c;}, g={a;}

1) Encode cubes 4; € g with unique integer
codes, by assigning a unique bit position
for every literal in sup(g)
eg., g=ab + e

110 001

Time

2) Encode cubes c; € f similarly complexity?

e.g., f=abc+ abd + de

110 110 001
3) Sort {a;, c;} by their codes
e.d., ab, abc, abd, ¢, de

110 001
hy=c+d hy,=d

Kurt Keutzer

49

N

.

AN

Copyright © 2001 K. Keutzer

