
1

Copyright © 2001 K. Keutzer

1

Technology Independent
Logic Optimization

Prof. Kurt Keutzer
EECS

University of California
Berkeley, CA

Thanks to R. Rudell, S. Malik

Kurt Keutzer 2

Outline

• Motivation for Multilevel
• Overview of Techniques
• Details on multilevel techniques

2

Copyright © 2001 K. Keutzer

Kurt Keutzer 3

2-Level =>Programmable Logic Arrays (PLAs)
We can represent any Boolean function in a 2-level/SOP

form
Any such representation can be implemented in a PLA

4 inputs

3 outputs

6 product terms

Kurt Keutzer 4

Early “Synthesis” Flow

FSM
Synthesis

FSM

logic

SOP logic
optimization

PLA

physical
design

layout

Highway-yellow

010001STI

STI/Restart

001100

Farmroad-green

LTI Sen

LTI+Sen/Restart

Farmroad-yellow

001010

STI

STI/Restart

Highway-green

100001

LTI+Sen

LTI Sen/Restart Initialize/Restart

F1 = B + D + A C + A C

I1
I2

O1
O2

3

Copyright © 2001 K. Keutzer

Kurt Keutzer 5

Why Multilevel Combinational Circuits?

There are many functions that are too
“expensive” to implement in two-level form

Try 16-bit adder ⇒ 32 input lines and 216

product terms!

2-level: control logic design
multi-level: datapath logic or random logic

Kurt Keutzer 6

Two-Level versus Multilevel

Even simple functions expressed in 2-Level:

6 product terms which cannot be shared.
24 transistors in static CMOS

May be more efficient in multi-level:

Note that B + C is a common term in f1 and f2

K = B + C 3 Levels
20 transistors in static CMOS
not counting inverters

f1 = AB + AC + AD
f2 = AB + AC + AE

f1 = ΑΚ + AD

f2 = AK + A E

4

Copyright © 2001 K. Keutzer

Kurt Keutzer 7

Outline

• Motivation for Multilevel
• Overview of Techniques
• Details on multilevel techniques

Kurt Keutzer 8

RTL Design Flow

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library

physical
design

layout

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

Module
Generators

Manual
Design

5

Copyright © 2001 K. Keutzer

Kurt Keutzer 9

Logic Optimization

Perform a variety of
transformations and
optimizations

Structural graph
transformations

Boolean transformations
Mapping into a physical library

smaller, faster
less power

logic
optimization

netlist

netlist

Library

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

Kurt Keutzer 10

Reduce to Combinational Optimization

B
Flip-flops

Combinational
Logic

input arrival times
input drive

output required times
output load

inputs outputs

6

Copyright © 2001 K. Keutzer

Kurt Keutzer 11

Representation: Boolean Network

 y1 y2 y3 y4

 y5 y6

 y7 y8

 y9 y10

y5 = H5 = y 1y2
y6 = H6 = y3 y4
y7 = H7 = y1y 6 + y2
y8 = H8 = y5 + y6
y9 = H9 = y7
y10 = H10 = y8

A Boolean network is designatedη = (v y ,
v

H) where:
 v y = (y1 ,K , yn+m+r) is a vector of variablesv
H = (H1 ,K , Hn+m+r) is a vector of functions

y1 ,K , yn are the primary input variables
yn+1,K , yn+r are the intermediate variables
yn+r+1,K yn+m+r are the primary output variables

yi = Hi (y1,K yn+m+r)

A Boolean network has an associated graph
which shows the function dependencies;
i.e., the edge (i, j) is present if yi ∈sup(H j).

Kurt Keutzer 12

Combinational Logic Optimization

Input:

Initial Boolean network
Timing characterization for the module

- input arrival times and drive factors
- output loading factors

Optimization goals
- output required times

Target library description
Output:

Minimum-area net-list of library gates which meets timing
constraints

A very difficult optimization problem !

7

Copyright © 2001 K. Keutzer

Kurt Keutzer 13

Modern Approach to Logic Optimization
Divide logic optimization into two subproblems:

• Technology-independent optimization
- determine overall logic structure
- estimate costs (mostly) independent of

technology
- simplified cost modeling

• Technology-dependent optimization (technology
mapping)

- binding onto the gates in the library
- detailed technology-specific cost model

Orchestration of various optimization/transformation
techniques for each subproblem

Kurt Keutzer 14

Formats

Boolean Network, Boolean equations
Generic library – technology independent
• Has standard functions – ND2, ND4, AOI22, pos-edge-

FF
• only an estimate of timing
Actual technology library
• Represents logic functions and their physical

characteristics of a library cells offered by a particular
silicon vendor – e.g. TSMC

• E.g. captured in .lib file
• Contains complete logical, timing information

8

Copyright © 2001 K. Keutzer

Kurt Keutzer 15

Logic Optimization

logic
optimization

netlist

netlist

Library

tech
independent

tech
dependent

2-level
Logic opt

multilevel
Logic opt

Real
Library

Generic
Library

Kurt Keutzer 16

Tech.-Independent Optimization

Involves:
Minimizing two-level logic functions.
Finding common subexpressions.
Substituting one expression into another.
Factoring single functions.

Factored versus Disjunctive forms

sum-of-products or disjunctive form

factored form
multi-level or complex gate

f = ac + ad + bc + bd + ae

f = a + b() c + d() + a e

9

Copyright © 2001 K. Keutzer

Kurt Keutzer 17

Decomposition

Searching for divisors which are common to many functions in
the network

Decomposition:

identify divisors which are common to several functions
introduce common divisor as a new node

re-express existing nodes using the new divisor
Technology-independent measure of cost to measure goodness

area cost: total number of literals

delay cost: levels of logic on the critical path

 G is a Boolean divisor of F if F = G⋅ H + R for functions H ≠ 0, R ≠ 0

Kurt Keutzer 18

Division

• If h ≠ 0, and h can be obtained using algebraic division,
then g is an algebraic divisor of f. Otherwise, g is a
Boolean divisor of f.

• Example:
f = ad + ae + bcd + j
g1 = a + bc
g2 = a + b

• Algebraic division f//a = d + e, f//(bc) = d
• Also,

f//a = d or f//a = e, i.e. algebraic division is not unique) h1 =
f//g1 = d, r1 = ae + j

• Boolean division: h2 = f ÷ g2 = (a + c)d, r2 = ae + j.
i.e. f = (a+b)(a+c)d + ae + j

10

Copyright © 2001 K. Keutzer

Kurt Keutzer 19

Given a function f to be strong divided by g
Add an extra input to f corresponding to g,

namely G and obtain function h as follows

Minimize h using two-level minimizer

Strong (or Boolean) Division

hON = fON − hDC

hOFF = fON + hDC

hDC = G g + G g

Kurt Keutzer 20

Algebraic vs. Boolean Methods

Algebraic techniques view equations as
polynomials and attempt to factor equations or
“divide” them
Do not exploit Boolean identities e.g., a a = 0

In algebraic substitution (or division) if a function
f = f(a, b, c) is divided by g = g(a, b), a and b
will not appear in f / g

Algebraic division: O(n log n) time
Boolean division: unmanageable number of

divisors

11

Copyright © 2001 K. Keutzer

Kurt Keutzer 21

Algebraic factorization procedures

Boolean factorization produces

Comparison of factorization

f = a b + a c + b a + b c + c a + c b

f = a b + c() + a b + c() + b c + c b

f = a + b + c() a + b + c()

Kurt Keutzer 22

Substitution is the factoring of one node in the
Boolean Network (e.g. l) by another (e.g. r)

Algebraic substitution of l into r fails
Boolean substitution yields results

Comparison

l = b f + bf() a + e() + ae b f + bf()
r = b f + b f() a + e() + ae b f + bf()

r = a e l + el() + a el + el()
l = a er + e r() + a e r + e r()

After resub:

12

Copyright © 2001 K. Keutzer

Kurt Keutzer 23

Algebraic Decomposition
Algebraic approximation (informal definition)

- simplify Boolean function using two-level minimization
- treat result as a polynomial; i.e.,

- identify common divisors as algebraic divisors of the
polynomials

xi and x i are different variables
i.e., xi ⋅ x i ≠ 0 and xi ⋅ xi ≠ xi

Kurt Keutzer 24

Algebraic Decomposition
Algebraic approximation (informal definition)

- simplify Boolean function using two-level minimization
- treat result as a polynomial; i.e.,

- identify common divisors as algebraic divisors of the
polynomials

Motivation
- manipulating polynomials is fast (linear time algorithms)
- # algebraic divisors still exponential, but usually

manageable
- loss of optimality, but experimentally shows good results

- interleave Boolean simplification procedures to improve
results

xi and x i are different variables
i.e., xi ⋅ x i ≠ 0 and xi ⋅ xi ≠ xi

13

Copyright © 2001 K. Keutzer

Kurt Keutzer 25

Algebraic Decomposition
Algebraic approximation (informal definition)

- simplify Boolean function using two-level minimization
- treat result as a polynomial; i.e.,

- identify common divisors as algebraic divisors of the
polynomials

Techniques
- single-cube algebraic divisors (common-cube

decomposition)

- multiple-cube algebraic divisors (kernel decomposition)

xi and x i are different variables
i.e., xi ⋅ x i ≠ 0 and xi ⋅ xi ≠ xi

Kurt Keutzer 26

Decomposition?

F = a d e + b d e + c d e + f

G = b g + c g + d g + a e f

H = a e g + b c

How can this logic be further simplified?

14

Copyright © 2001 K. Keutzer

Kurt Keutzer 27

Common Cube Decomposition

Finds algebraic divisors which are single cubes

"Common cubes" are easy to detect

Greedy algorithm:

– enumerate all maximal common cubes
– select cube which saves the most literals
– add node to the network and re-express affected

nodes

– repeat until no common cubes remain

References: [Dietmeyer-69], [Brayton-82], [Rudell-89]

F = a d e + b d e + c d e + f
G = b g + c g + d g + a e f

H = a e g + b c

F = X d + b d e + c d e + f
G = b g + c g + d g + X f

H = X g + b c
X = a e

Kurt Keutzer 28

Kernel Decomposition

cube-free: an expression is cube-free if no literal appears in every cube

kernel: A kernel of an expression is a cube-free divisor which is not contained in
any other cube-free divisor (e.g., a + b + c is a kernel of F, while b + c is not a
kernel because it is contained in a + b + c)

Kernels are useful because:

- if f and g share a common multiple-cube divisor, then the intersection of
some kernel from f and some kernel from g yields a common multiple- cube
divisor [Brayton-82].

- practical algorithms exist to find intersections of kernels [Rudell-89].

- kernel decomposition finds solutions which are difficult to find using only
common-cube decomposition

F = a d e + b d e + c d e + f
G = b g + c g + d g + a e f

H = a e g + b c

F = (a + b + c) d e + f
G = (b + c + d) g + a e f

H = a e g + b c

F = (a + X) d e + f
G = (X + d) g + a e f

H = a e g + b c
X = b + c

15

Copyright © 2001 K. Keutzer

Kurt Keutzer 29

Selective Collapsing

"Collapse" nodes into their fanout to increase the size of each node

f = a h + b h' + c d
g = b h
h = a c + d'

collapse h

f = a (a c + d') + b (a' d' + c' d') + c d
g = b (a c + d')

simplify

f = a c + a d' + a' b d' + b c' d' + c d
g = a b c + b d'

Goals:

- remove bad initial
structure

- reduce logic level depth

- expose further
optimization opportunities

Kurt Keutzer 30

Summary of Typical Recipe

Selective-collapse

Simplify: Two-level minimization at Boolean network
node

Structuring/Algebraic decomposition

Local Boolean optimizations

Tree-covering for gate selection

Load-buffering for fanout-tree construction

Local transformation improvement of circuit structure

Restructure and iterate if timing constraints not met

Technology
Independent
Optimization

Technology
Mapping

16

Copyright © 2001 K. Keutzer

Kurt Keutzer 31

Outline

• Motivation for Multilevel
• Overview of Techniques
• Details on multilevel techniques

Kurt Keutzer 32

Decomposition - details

Factor F

Extract common expression

F =
f1 = AB + AC + AD + AE + ABC D E
f2 = AB+ AC + AD + AF + ABC D F

F =
f1 = A B+ C + D + E() + ABC DE

f2 = A B + C + D + F() + ABC DF

G =
g1 = B + C + D
f1 = A g1 + E() + A E g1

f2 = A g1 + F() + A F g1

17

Copyright © 2001 K. Keutzer

Kurt Keutzer 33

Representation: Boolean Network

 y1 y2 y3 y4

 y5 y6

 y7 y8

 y9 y10

y5 = H5 = y 1y2
y6 = H6 = y3 y4
y7 = H7 = y1y 6 + y2
y8 = H8 = y5 + y6
y9 = H9 = y7
y10 = H10 = y8

A Boolean network is designatedη = (v y ,
v

H) where:
 v y = (y1 ,K , yn+m+r) is a vector of variablesv
H = (H1 ,K , Hn+m+r) is a vector of functions

y1 ,K , yn are the primary input variables
yn+1,K , yn+r are the intermediate variables
yn+r+1,K yn+m+r are the primary output variables

yi = Hi (y1,K yn+m+r)

A Boolean network has an associated graph
which shows the function dependencies;
i.e., the edge (i, j) is present if yi ∈sup(H j).

Kurt Keutzer 34

Weak (or Algebraic) Division

Definition: support of f, denoted sup(f) = { set
of all variables v that occur in f as v or v }

Example: f = A B + C

sup(f) = { A, B, C }

18

Copyright © 2001 K. Keutzer

Kurt Keutzer 35

Weak (or Algebraic) Division

Definition: support of f, denoted sup(f) = { set
of all variables v that occur in f as v or v }

Example: f = A B + C

sup(f) = { A, B, C }

Definition: we say that f is orthogonal to g,
f ⊥ g, if sup(f) ∩ sup(g) = φ

Example: f = A + B g = C + D

∴ f ⊥ g since { A, B } ∩ { C, D } = φ

Kurt Keutzer 36

Weak Division - 2

We say that g divides f weakly if there exist h, r
such that f = gh + r where h ≠ φ and g ⊥ h

Example: f = ab + ac + d
g = b + c

f = a(b + c) + d h = a r = d

We say that g divides f evenly if r = φ

The quotient f / g is the largest h such that
f = gh + r i.e., f = (f / g)g + r

19

Copyright © 2001 K. Keutzer

Kurt Keutzer 37

Computing f / g

Given f = { ci }, g = { ai } i.e., lists of sets of
cubes

hi = { bj | ai bj ∈ f } ∀ i
i.e., all the multipliers of the cube ai in g

that produce elements of f are in hi

Theorem: f / g = ∩ hi = h1 ∩ h2 . . . h| g |
i = 1

| g |

Kurt Keutzer 38

Weak Division Example

f = abc + abde + abh + bcd
g = c + de + h

Theorem says f / g = f / c ∩ f / de ∩ f / h
f / c = ab + bd

f / de = ab
f / h = ab

f / g = (ab + bd) ∩ ab ∩ ab = ab
f = ab(c + de + h) + bcd

Time complexity: O(| f | | g |). | f | the number of
cubes in f

20

Copyright © 2001 K. Keutzer

Kurt Keutzer 39

Types of Algebraic Divisors

Define divisors of f as the set
D(f) = { g | f / g ≠ φ }

Define primary divisors of f as
P(f) = { f / c | c is a cube }

Example: f = abc + abde
f / a = bc + bde is a primary divisor

Every divisor of f is contained in a primary
divisor. If g divides f, then g ⊆ p ∈ P(f)

g is termed “cube-free” if the only cube dividing
g evenly is 1.

Kurt Keutzer 40

Kernels and Divisors

Define the kernels of f as
K(f) = { k | k ∈ P(f), k is cube-free }

Example: f = abc + abde

f / a = bc + bde is a primary divisor
but is not cube-free since b is a
factor f / a = b(c + de)

f / ab = c + de is a kernel
ab is the co-kernel

The co-kernel of a kernel is not unique.

21

Copyright © 2001 K. Keutzer

Kurt Keutzer 41

Examples

Consider
f = acd + bcd + ae + be

DIVISOR TYPE?
f / a = cd + e

f / c = ad + bd

f / cd = a + b

f / e = a + b

Kurt Keutzer 42

Common Divisors and Kernels

Goal of multi-level logic optimizer is to find
common divisors of two (or more) functions
f and g

Theorem: f and g have a non-trivial common
divisor d (d ≠ cube) if and only if there
exist kernels

kf ∈ K(f), kg ∈ K(g) such that
kf ∩ kg is non-trivial, i.e., not a cube

∴ can use kernels of f and g to locate
common divisors

22

Copyright © 2001 K. Keutzer

Kurt Keutzer 43

Kernel1(j, g) {
R = g ;
/* n = number of literals */
for (i = j + 1; i ≤ n; i = i + 1) {

if (li in one or no terms) continue ;
ce = Max. literal cube evenly dividing (g / li) li ;
if (lk not in ce, for all k ≤ i)

R = R ∪ Kernel1(i, (g / li) / ce)
}
return(R) ;

}

Algorithm to find All Kernels

Kernels(f)

Find cf so f / cf is cube-free ;
K = Kernel1(0, f / cf) ;
if (f is cube-free)

return(f ∪ K) ;
return(K) ;

{Presume ordering on literals}

Kurt Keutzer 44

Kerneling Example
f = abcd + abce + adgh + aegh + abde + acdeg + beh

co-kernel kernel

1 a(bc + gh) (d + e) + ade(b + cg) + beh
a (bc + gh) (d + e) + de(b + cg)
ab c(d + e) + de
abc d + e
abd c + e
ac b (d + e) + deg
acd b + eg
ace b + dg
ad b(c + e) + g(ce + h)
ade b + cg
adg ce + h

23

Copyright © 2001 K. Keutzer

Kurt Keutzer 45

Kerneling Illustrated

abcd + abce + adfg + aefg + adbe + acdef + begabcd + abce + adfg + aefg + adbe + acdef + beg

aa bb
cc

(a)(a)
cc

dd ee
(a)(a)

(a)(a) ac+d+gac+d+g
gg

d+ed+ecd+gcd+g
ff

ce+gce+g
ff

b+cfb+cf
ee

dd

b+dfb+df
ee

b+efb+ef
dd

cc

d+ed+e

c+ec+e

c+dc+d

bb

cc dd ee

bcd+ bce +dfg + efg + bde + cdef

ac (d + e) ac (d + e) –– already chosenalready chosen

Kurt Keutzer 46

Pruning Condition and Example

If the largest cube factor ce contains an already
selected literal, then terminate current branch
All kernels found by continuing have already been seen

f = abc(d + e) (k + l) + agh + m

f / a = bc(d + e) (k + l) + gh

f / ab = c(d + e) (k + l)

(d + e) (k + l)

f / ac = b(d + e) (k + l)

a

b c

b already
selected

24

Copyright © 2001 K. Keutzer

Kurt Keutzer 47

Orchestration of Optimization Techniques

Technology-independent:

- two-level minimization
- selective collapsing
- algebraic decomposition
- restructuring for timing
- redundancy removal
- transduction
- global-flow

Technology-dependent:
- tree covering
- load buffering
- rule-based mapping
- signature analysis
- inverter phase

assignment
- discrete sizing

Kurt Keutzer 48

Logic optimization - summary

Current formulation of logic synthesis and optimization is the
most common techniques for designing integrated circuits
today

Has been the most successful design paradigm 1989 - present
Almost all digital circuits are touched by logic synthesis
• Microprocessors (control portions/random glue logic ~ 20%)
• Application specific standard parts (ASSPs)- 20 - 90%
• Application specific integrated circuits (ASICS) - 40 - 100%
Real logic optimization systems orchestrate optimizations
• Technology independent
• Technology dependent
• Application specific (e.g. datapath oriented)

25

Copyright © 2001 K. Keutzer

Kurt Keutzer 49

Computing f / g

Given f = { ci }, g = { ai }

1) Encode cubes ai ∈ g with unique integer
codes, by assigning a unique bit position
for every literal in sup(g)
e.g., g = ab + e

110 001

2) Encode cubes cj ∈ f similarly
e.g., f = abc + abd + de

110 110 001

3) Sort { ai , cj } by their codes
e.g., ab, abc, abd, e, de

110 001
h1 = c + d h2 = d

Time
complexity?

