Two-Level
 Logic Minimization

Prof. Srinivas Devadas

MIT
Prof. Kurt Keutzer
Prof. Richard Newton
University of California
Berkeley, CA

Schematic Entry Era

Given:

- Gate-level schematic entry editor
- Gate-level simulator (we haven't talked about this)
- Gate level static-timing analyzer
- Netlist \rightarrow Layout flow
- We can (and did) build large-scale integrated (35,000 gate) circuits
- EDA vendors provided front-end tools and ASIC vendor (e.g. LSI Logic) provided back-end flow
- But ... It may be much more natural, and productive, to describe complex control logic by Boolean equations than by a schematic netlist of gates

For example: traffic light controller

As a State transition diagram

Boolean Logic Equations

```
\(\mathrm{J}_{\mathrm{A}}=\overline{\mathrm{A}} \bullet(\) Sen \(\bullet\) LTI \(+\overline{\mathrm{Sen}}+\mathrm{LTI})\)
\(\mathrm{K}_{\mathrm{A}}=\mathrm{J}_{\mathrm{B}}=\mathrm{K}_{\mathrm{B}}=\mathrm{A} \bullet \mathrm{STI}\)
Restart \(=\overline{\mathrm{A}} \bullet\) Sen \(\bullet \mathrm{LTI}+\overline{\mathrm{A}} \bullet \mathrm{B} \bullet\) Sen \(+\mathrm{A} \bullet \mathrm{STI}\)
\(\mathrm{CHWG}=\overline{\mathrm{A}} \bullet \overline{\mathrm{B}}\)
\(\mathrm{CHWY}=\mathrm{A} \bullet \overline{\mathrm{B}}\)
CHWR \(=\mathrm{B}\)
CFRG \(=\overline{\mathrm{A}} \bullet \mathrm{B}\)
CFRY \(=\mathrm{A} \bullet \mathrm{B}\)
\(\mathrm{CFRR}=\overline{\mathrm{B}}\)
```


Synthesize Logic to Implement equations

inputs

Physically Implement: AND-OR and NOR-NOR PLAs

Logic increases with the number of product terms

Early "Synthesis" Flow

Key Technology: SOP Logic Minimization

Can realize an arbitrary logic function in sum-of-products or two-level form
$F 1=\bar{A} \bar{B}+\bar{A} B D+\bar{A} B \bar{C} \bar{D}$
$+A B C \bar{D}+A \bar{B}+A B D$
$F 1=\bar{B}+D+\bar{A} \bar{C}+A C$

Of great interest to find a minimum sum-ofproducts representation

Definitions - 1

Basic definitions:
Let $B=\{0,1\}$ and $Y=\{0,1,2\}$
Input variables: $X_{1}, X_{2} \ldots X_{n}$
Output variables: $\mathrm{Y}_{1}, \mathrm{Y}_{2} \ldots \mathrm{Y}_{\mathrm{m}}$
A logic function ff (or Boolean function, switching function) in n inputs and m outputs is the map
ff: $B^{n} \longrightarrow Y^{m}$

Definitions - 2

If $b \in B^{n}$ is mapped to a 2 then function is incompletely specified, else completely specified

For each output we define:
ON-SET $\mathrm{T}_{\mathrm{i}} \subseteq \mathrm{B}^{\mathrm{n}}$, the set of all input values for which $\mathrm{ff}_{\mathrm{i}}(\mathrm{x})=1$

OFF-SET $T_{i} \subseteq B^{n}$, the set of all input values for which $\mathrm{ff}_{\mathrm{i}}(\mathrm{x})=0$
$D C-S E T_{i} \subseteq B^{n}$, the set of all input values for which $\mathrm{ff}_{\mathrm{i}}(\mathrm{x})=2$

The Boolean n-Cube, $\mathrm{B}^{\text {n }}$

- $\mathcal{B}=\{0,1\}$
- $\mathcal{B}^{2}=\{0,1\} \times\{0,1\}=\{00,01,10,11\}$

Literals

A literal is a variable or its negation y, \bar{y}
It represents a logic function

Boolean Formulas

Boolean functions can be represented by formulas defined as catenations of

- parentheses - (,)
- literals - $x, y, z, \bar{x}, \bar{y}, \bar{z}$
- Boolean operators - + (OR), \times (AND)
- complementation - e.g. $\overline{x+y}$

Examples: $f=x_{1} \times \bar{x}_{2}+\bar{x}_{1} \times x_{2}$

$$
\begin{aligned}
& =\left(x_{1}+x_{2}\right) \times\left(\bar{x}_{1}+\bar{x}_{2}\right) \\
h & =a+b \times c \\
& =\overline{\bar{a} \times(\bar{b}+\bar{c})}
\end{aligned}
$$

We will usually replace \times by catenation, e.g. $a \times b \rightarrow a b$.

Example Boolean Function

EXAMPLE: Truth table form of an incompletely specified function
ff: $B^{3} \longrightarrow Y^{2}$

X_{1}	X_{2}	X_{3}	Y_{1}

0	0	0	1	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	2
1	1	0	1	1
1	1	1	2	1

$Y_{1}: O N-S_{1}=\{000,001,100,101,110\}$
OFF-SET $_{1}=\{010,011\}$
$\mathrm{DC}^{-S E T}{ }_{1}=\{111\}$

Cube Representation

$F 1=\bar{A} \bar{B}+\bar{A} B D+\bar{A} B \bar{C} \bar{D} \quad 00-\mathrm{l}$
$+A B C \bar{D}+A \bar{B}+A B D$
01-1 1
01001
11101
10-1
11-1 1
$F 1=\bar{B}+D+\bar{A} \bar{C}+A C$
$\begin{array}{ll}-0-2 & 1 \\ ---1 & 1\end{array}$
0-0-1
1-1-1

Operations on Logic Functions

(1) Complement: $f \longrightarrow \bar{f}$
interchange ON and OFF-SETS
(2) Product (or intersection or logical AND)
$h=f \bullet g$ or $h=f \cap g$
(3) Sum (or union or logical OR):
$h=f+g$ or $h=f \cup g$
(4) Difference $\mathrm{h}=\mathrm{f}-\mathrm{g}=\mathrm{f} \cap \overline{\mathbf{g}}$

Prime Implicants

A cube p is an implicant of f if it does not intersect the OFF-SET of f
$p \subseteq f_{O N} \cup f_{D C}\left(\right.$ or $\left.p \cap f_{\text {OFF }}=0\right)$
A prime implicant of f is an implicant p such that
(1) No other implicant q is such that $q \supset p$
in the sense that q covers all vertices of p
(2) $f_{D C} \nrightarrow p$

A minterm is a fully specified implicant
e.g., 011, 111 (not 01-)

Examples of Implicants/Primes

X_{1}	X_{2}	X_{3}	Y_{1}
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	2

000, 00- are implicants, but not primes ($-0-$)
1-1
0-0

Prime and Irredundant Covers

A cover is a set of cubes C such that

$$
\stackrel{C}{C} \stackrel{f_{O N}}{\subseteq} \subseteq f_{\mathrm{ON}} \cup \mathrm{f}_{\mathrm{DC}}
$$

All of the ON-set is covered by C
C is contained in the ON-set and Don't Care Set
A prime cover is a cover whose cubes are all prime implicants

An irredundant cover is a cover C such that removing any cube from C results in a set of cubes that no longer covers the function

Minimum covers

A minimum cover is a cover of minimum cardinality

Theorem: A minimum cover can always be found by restricting the search to prime and irredundant covers.

Given any minimum cover C
(a) if redundant, not minimum
(b) if any cube q is not prime, replace q with prime $p \supset q$ and it is a minimum prime cover

Example Covers

X_{1}	X_{2}	X_{3}	Y_{1}
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	2

00 -
10 - is a cover. Is it prime?
11 Is it irredundant?

What is a minimum prime and irredundant cover for the function?

Example Covers

X_{1}	X_{2}	X_{3}	Y_{1}
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	2

00 -
10 - is a cover. Is it prime?
11- Is it irredundant?

- 0 -

11 - is a cover. Is it prime? Is it irredundant? Is it minimum?

What is a minimum prime and irredundant cover for the function?

The Quine - McCluskey Method

Step 1: List all minterms in ON-SET and DC-SET

Step 2: Use a prescribed sequence of steps to find all the prime implicants of the function

Step 3: Construct the prime implicant table

Step 4: Find a minimum set of prime implicants that cover all the minterms

Example

0	0000	0,8	-000 ©	8,9,10,11	10-- (B)
5	0101	5,7	01-1 (D)	10,11,14,15	1-1-(A)
7	0111	7,15	-111 (C)		
8	1000	8,9	100-		
9	1001	8,10	10-0		
10	1010	9,11	10-1		
11	1011	10,11	101-		
14	1110	10,14	1-10		
15	1111	11,15	1-11		
		14,15	111-		

(A) (B) (C) (D) (E) are prime implicants

Prime Implicant Table

X's indicate minterms covered by Pls

Essential Prime Implicants

Row with a single X identifies an essential prime implicant (EPI)

Essential Pl's E, D, B, A \Rightarrow Form minimum cover

Dominating Rows

In general EPIs do not form a cover
At Step 4, we need to select Pls to add to the EPIs so as to form a minimum cover

Row 9 dominates 8
Row 25 dominates 24
Can remove 8 since covering 9 implies covering of $8 \quad{ }^{29}$

Dominating Columns

F dominates D
Can remove D since F covers all minterms D covers

Can this happen in the original table?
May happen after removal of EPIs

Step 4 Issues

Removal of dominating columns or dominated rows may introduce columns with single X 's.

- Need to iterate

A cover may still not be formed after all essential elements and dominance relations have been removed

- Need to branch over possible solutions

Recursive Branching (Step 4)

(a) Select EPIs, remove dominated columns and dominating rows iteratively till table does not change
(b) If the size of the selected set (+ lower bound) exceeds or equals best solution so far, return from this level of recursion. If no elements left to be covered, declare selected set as the best solution recorded.
(c) Select (heuristically) a branching column.

Recursive Branching (Step 4) - 2

(d) Given the selected column, recur

- On the sub-table resulting from deleting the column and all rows covered by this column. Add this column to the selected set.
- On the sub-table resulting from deleting the column without adding it to the selected set.

Example - a1

No essential primes, dominated rows or columns.

Select prime A

Example-a2

B is dominated by C
H is dominated by G
Remove B, H

Example - a3

Example - b1

	BCDEFGH	Selected set $=\{$ \}
0	X	
1	X	Essential primes
5	$\mathrm{X} \times$	in this table are B, H
7	X X	
8 10	$\mathrm{XX}_{\mathrm{X}}^{\mathrm{X}}$	Selected set $=\{B, H\}$
14	$\chi^{\chi}{ }^{x}$	
15	X X	

	CDEFG	Selected set
7	X X	$=\{B, H, D, F\}$
10	X X	
14	$\chi^{x} \times$	
15	X X	

Espresso-Exact (1987)

Efficient lower bounding at Step 4(b) to terminate unprofitable searches high in the recursion
 with cost 10
Size of selected set + Lower bound equals or exceeds best solution already known, quit level of recursion

Lower Bounding

Lower bound: Maximal independent set of rows all of which are pairwise disjoint

Maximal independent set $=\{1,4,8\}$ or $\{0,6,10\}$
Need to select at least one $\mathrm{Pl} /$ column to cover each row.
NOTE: Finding maximum independent set is itself worst-case exponential

Complexity of Q-M based Methods

(1) There exist functions for which the
number of prime implicants is $O\left(3^{n}\right) \quad(n$ is number of inputs)
(2) Given a PI table, recursive branching could require $O\left(2^{m}\right)$ time (m is the number of Pls)

Current logic minimizers able to find exact solutions for functions with 20-25 input variables
\Rightarrow Need heuristic methods for larger functions

Heuristic Logic Minimization

Presently, there appears to be a limit of $\sim \mathbf{2 0 - 2 5}$ input variables in problems that can be handled by exact minimizers

Easy for complex control logic to exceed 20-25 input variables

HISTORY

50's	Karnaugh Map	≤ 5 variables
60's	Q-M method	<10 variables
70's	Starner, Dietmeyer	<15 variables
1974	MINI	heuristic
$1980-84$	ESPRESSO	approaches
1986	McBoole	<25 variables
1987	ESPRESSO-EXACT	<25 variables

Also, Multiple Output Functions

Truth table is AND-OR representation

AND	OR
a b c	f g
01 -	10
011	
101	01

What does vector 011 produce?
ON-SET of $\mathrm{f}=\left\{\begin{array}{lll}0 & 1-, & 0\end{array} 11\right\}= \begin{cases}0 & 1-\}\end{cases}$
ON-SET of $\mathrm{g}=\left\{\begin{array}{lll}0 & 1 & 1,1 \\ 1 & 1\end{array}\right\}$

Multiple-Output Function Primes

Same definition as in single-output case

- Cube with most minterms that will intersect OFF-SET if you add any more minterms to them

	f g	CUBE	
0000	10	0000	10
0001	10	$000-$	10
1001	10	1001	10
0000	01	1001	11
0010	01	000 -	11

MINI

S.J. Hong, R.G. Cain, D.L. Ostapko - 1974

Final solution is obtained from initial solution by iterative improvement rather than by generating and covering prime implicants

Three basic modifications are performed

- Reduction of implicants while maintaining coverage
- Reshaping implicants in pairs
- Expansion of implicants (and removal of covered implicants)

MINI Algorithm

MINI (F, DC) \{
F is ON-SET
DC is Don't Care Set

1. $\bar{F}=U-F \quad U$ is universe cube
2. (Cover) $f=$ Expand f against F p = Compute solution size
3. $f=$ Reduce each cube of f against other cubes of $F \vee D C$
4. Reshape f
5. $f=$ Expand f against \bar{F} $\mathrm{n}=$ compute solution size
6. If $\mathbf{n}<\mathbf{p}$ go to 3, else, exit
\}

Example: Expansion

Consider $\mathcal{F}(a, b, c)=(f, d, r)$, where $f=\{\bar{a} b \bar{c}, a \bar{b} c, a b c\}$ and $d=\{a \bar{b} \bar{c}, a b \bar{c}\}$, and the sequence of covers illustrated below

- off
- on
- don't care

a b C

$F^{2}=a+\overline{a b c}+\bar{a} \overline{b c}$ abc is redundant a is prime
$F^{3}=a+\bar{a} b \bar{c}$

$F^{4}=a+\overline{b c}$

Expansion Example

Step 2 in MINI:
Expand f against \bar{F}
f
$f_{\text {expanded }}$ \bar{F}

1001	01	1001	01	1110	10
0110	10	0-10	10	0101	10
1101	10	1101	10	0010	01
1000	10	$\rightarrow 10-0$	10	0001	01
1010	01	1010	01	0000	10
-100	10	-100	10	- 101	01
-111	01	- - 11	11	- 000	01
1011	01				
-111	10				
-010	10				
- 1 -0	01	- 1 - 0	01		
- 0 - 1	10	- 0-1	10		

Order small cubes first

Reduction

Reduce the size (in the sense of the number of minterms/vertices that it covers) of cubes in f without affecting coverage

The smaller the size of the cube, the more likely it will be covered by an expanded cube

Reduction Examples

Reducing covers:

f	$1--$	1
$-1-1$	1	
--1	1	

$$
\begin{array}{llll}
& \begin{array}{llll}
100 & 1 \\
\mathrm{f}_{\text {reduced }} & -1- & 1 \\
& --1 & 1
\end{array}
\end{array}
$$

1001	01	--11		$\downarrow-11$	11
0-10	10	- 0 -1	1	- 001	10
1101	10	-1-0	0	-1-0	01
$10-0$	10	$10-0$	1	100	10
1010	01	-100	1	-100	0
- 100	10	0-10	10	0-1-10	0
--11	11	1101	0	$\begin{array}{llll}110 \\ 1 & 1 & 1 \\ \\ 1\end{array}$	10
$-1-0$ $-0-1$	01 10	1001	0	1001	
Larger cubes first					

Reshaping

Attempt to change the shape of the cubes without changing coverage or number

Reshaping transforms a pair of cubes into another pair such that coverage is unaffected (perturbs solution so next expand does things differently)

Reshaping Example

$--11$	11	- - 11	11
-001	10	-1-0	01
-1-0	01	$10-0$	10
f $10-0$	10	$\mathrm{f}_{\text {rdered }} \quad-001$	10
-100	10	rdered -100	10
0-10	10	0-10	10
1101	10	1101	10
1010	01	1010	01
1001	01	1001	01
$1-11$	11	$1-11$	11
$2-1-0$	01	$\longrightarrow-110$	01
$310-0$	10	$(2,5) \longleftrightarrow-100$	11
$4-001$	10	$(2,8) \longrightarrow 1000$	10 freshaped
$5-100$	10	$(3,8) \longrightarrow 1010$	11 reshaped
$60-10$	10	$(4) \longrightarrow 0001$	10
$\begin{array}{lllll}7 & 1 & 1 & 1\end{array}$	10	$(4,9) \longleftrightarrow 1001$	11
81010	01	$6 \quad 0-10$	10
91001	01	711101	10

A Complete Example

Example - 2

$c d d^{a b}$		01	11	10	00	01	11	10		expanded f
00		9	9	10		5	5		0001	
01	4		3	4				2		
11	1,4	1	1	1,4	1	1	1	1	11	
10	7	7		10		5	5	6	10	

	a b c d	f g			
1	--11	11		--11	11
2	1001	01		1001	0
3	1101	10	reduce	1101	10
4	$-0-1$	10		-0 01	10
5	-1-0	01		-1-0	0
6	1010	01		1010	0
7	$0-10$	10		$0-10$	0
9	-100	10		-100	10
10	$10-0$	10		$10-0$	10

Example - 3

$c d d^{a b}$	00	01	11	10	00	01	11	10		
00		9	9	10		5	5		00	
01	4		3	4				2	01	duced
11	1	1	1	1	1	1	1	1	11	
10	7	7		10		5	5	6	10	

Example-4

$c d d^{a b}$	00	01	11	10	00	01	11	10		
00		9	9	10		9	9		00	
01	4		3	2				2	01	
11	1	1	1	1	1	1	1	1	11	
10	7	7		6		5	5	6	10	

	a b c d	f g		
1	--11	1	expand --11	11
2	1001	01	$\longrightarrow 10-1$	11
3	1101	10	$\longrightarrow 1-0-$	10
4	0001	10	$\rightarrow-0-1$	10
5	-110	01	$\rightarrow-1-0$	01
6	1010	11	$\longrightarrow 101-$	11
7	0-10	10	0-10	10
9	-100	11	-100	11
10	1000	10		

Example - 5

final F		a b c d	f g
	1	- - 11	11
	2	$10-1$	11
	3	1-0-	10
	4	-0-1	10
	5	-1-0	01
	6	101 -	11
	7	$0-10$	10
	9	-100	11

Summary of 2-level

2-level optimization is very effective and mature.
Expresso (developed at Berkeley) is the "last word" on the subject

2-level optimization is directly useful for PLA's/PLD's - these were widely used to implement complex control logic in the early 80's - they are rarely used these days

2-level optimization forms the theoretical foundation for multilevel logic optimization

2-level optimization is useful as a subroutine in multilevel optimization

