Two-Level Logic Minimization

Prof. Srinivas Devadas

MIT

Prof. Kurt Keutzer

Prof. Richard Newton

University of California

Berkeley, CA

Schematic Entry Era

Given:

- · Gate-level schematic entry editor
- Gate-level simulator (we haven't talked about this)
- Gate level static-timing analyzer
- Netlist → Layout flow
- We can (and did) build large-scale integrated (35,000 gate) circuits
- EDA vendors provided front-end tools and ASIC vendor (e.g. LSI Logic) provided back-end flow
- But ... It may be much more natural, and productive, to describe complex control logic by Boolean equations than by a schematic netlist of gates

3

Farmroad Sensor Highway Highway Farmroad Sensor

Boolean Logic Equations

$$\overline{J_A} = \overline{A} \bullet \left(Sen \bullet LTI + \overline{Sen} + LTI \right)$$

$$K_A = J_B = K_B = A \bullet STI$$

Restart = $\overline{A} \cdot \text{Sen} \cdot \text{LTI} + \overline{A} \cdot \text{B} \cdot \text{Sen} + A \cdot \text{STI}$

 $CHWG = \overline{A} \bullet \overline{B}$

 $CHWY = A \bullet \overline{B}$

CHWR = B

 $CFRG = \overline{A} \bullet B$

 $CFRY = A \bullet B$

 $CFRR = \overline{B}$

Key Technology: SOP Logic Minimization

Can realize an arbitrary logic function in sum-of-products or two-level form

F1 =
$$\overline{A}$$
 \overline{B} + \overline{A} B D + \overline{A} B \overline{C} \overline{D}
+ A B C \overline{D} + A \overline{B} + A B D

$$F1 = \overline{B} + D + \overline{A} \overline{C} + AC$$

Of great interest to find a minimum sum-ofproducts representation

Definitions - 1

Basic definitions:

, don't care - aka "X"

Let $B = \{0, 1\}$ and $Y = \{0, 1, 2\}$

Input variables: $X_1, X_2 ... X_n$

Output variables: Y₁, Y₂ ... Y_m

A logic function ff (or Boolean function, switching function) in n inputs and m outputs is the map

ff:
$$B^n \longrightarrow Y^m$$

11

Definitions - 2

If b ∈ Bⁿ is mapped to a 2 then function is incompletely specified, else completely specified

For each output we define:

ON-SET_i \subseteq Bⁿ, the set of all input values for which $f_i(x) = 1$

OFF-SET_i \subseteq **B**ⁿ, the set of all input values for which $ff_i(x) = 0$

 $DC-SET_i \subseteq B^n$, the set of all input values for which $ff_i(x) = 2$

The Boolean n-Cube, Bⁿ

- $\mathcal{B} = \{0, 1\}$
- $\mathcal{B}^2 = \{0, 1\} \times \{0, 1\} = \{00, 01, 10, 11\}$

13

Literals

A literal is a variable or its negation $\,y,\,\overline{y}\,$

It represents a logic function

Boolean Formulas

Boolean functions can be **represented** by **formulas** defined as catenations of

- parentheses (,)
- literals $x, y, z, \overline{x}, \overline{y}, \overline{z}$
- Boolean operators + (OR), × (AND)
- complementation e.g. $\overline{x+y}$

Examples:
$$f = x_1 \times \overline{x}_2 + \overline{x}_1 \times x_2$$

$$= (x_1 + x_2) \times (\overline{x}_1 + \overline{x}_2)$$

$$h = \underline{a + b \times c}$$

$$= \overline{a \times (\overline{b} + \overline{c})}$$

We will usually replace \times by catenation, e.g. $a \times b \rightarrow ab$.

15

Example Boolean Function

EXAMPLE: Truth table form of an incompletely specified function ff: B³ > Y²

$$Y_1$$
: ON-SET₁ = {000, 001, 100, 101, 110}
OFF-SET₁ = {010, 011}
DC-SET₁ = {111}

Cube Representation

minimum representation

17

Outputs

Inputs

Operations on Logic Functions

- (1) Complement: f → f
 interchange ON and OFF-SETS
- (2) Product (or intersection or logical AND) $h = f \circ g$ or $h = f \cap g$
- (3) Sum (or union or logical OR): h = f + g or $h = f \cup g$
- (4) Difference $h = f g = f \cap \overline{g}$

Prime Implicants

A cube p is an implicant of f if it does not intersect the OFF-SET of f

$$p \subseteq f_{ON} \cup f_{DC}$$
 (or $p \cap f_{OFF} = 0$)

A prime implicant of f is an implicant p such that

- (1) No other implicant q is such that $q \supset p$ in the sense that q covers all vertices of p (2) $f_{DC} \not\supset p$
- A minterm is a fully specified implicant e.g., 011, 111 (not 01-)

19

Examples of Implicants/Primes

X ₁	X_2	X_3	Y ₁
0	0	0	1
0	0 1	1 0	1 0
0	1	1	0
1	0	1	1
1	1	0 1	1 2

000, 00- are implicants, but not primes (-0-)

1-1

0-0

Prime and Irredundant Covers

A cover is a set of cubes $\begin{cal}{c} C & \text{such that} \\ C & \supseteq f_{\text{ON}} \\ C & \subseteq f_{\text{ON}} \cup f_{\text{DC}} \end{cal}$

All of the ON-set is covered by C

C is contained in the ON-set and Don't Care Set

A prime cover is a cover whose cubes are all prime implicants

An irredundant cover is a cover C such that removing any cube from C results in a set of cubes that no longer covers the function

21

Minimum covers

A minimum cover is a cover of minimum cardinality

Theorem: A minimum cover can always be found by restricting the search to prime and irredundant covers.

Given any minimum cover C
(a) if redundant, not minimum

(b) if any cube q is not prime, replace q with prime $p \supset q$ and it is a minimum prime cover

Example Covers

0 0 -1 0 - is a cover. Is it prime? 1 1 - Is it irredundant?

What is a minimum prime and irredundant cover for the function?

23

Example Covers

0 0 -1 0 - is a cover. Is it prime? 1 1 - Is it irredundant?

- 0 11 - is a cover. Is it prime?
Is it irredundant?
Is it minimum?

What is a minimum prime and irredundant cover for the function?

The Quine - McCluskey Method

Step 1: List all minterms in ON-SET

and DC-SET

Step 2: Use a prescribed sequence of

steps to find all the prime implicants of the function

Step 3: Construct the prime implicant

table

Step 4: Find a minimum set of prime

implicants that cover all the

minterms

25

Example

A B ○ □ E are prime implicants

Prime Implicant Table

X's indicate minterms covered by PIs

27

Essential Prime Implicants

Row with a single \times identifies an essential prime implicant (EPI)

Essential Pl's E, D, B, A ⇒ Form minimum cover

Dominating Rows

In general EPIs do not form a cover

At Step 4, we need to select PIs to add to the EPIs so as to form a minimum cover

Row 9 dominates 8 Row 25 dominates 24

Can remove 8 since covering 9 implies covering of 8

Dominating Columns

F dominates D

Can remove D since F covers all minterms D covers

Can this happen in the original table?

May happen after removal of EPIs

Step 4 Issues

Removal of dominating columns or dominated rows may introduce columns with single X's.

Need to iterate

A cover may still not be formed after all essential elements and dominance relations have been removed

Need to branch over possible solutions

3

Recursive Branching (Step 4)

- (a) Select EPIs, remove dominated columns and dominating rows iteratively till table does not change
- (b) If the size of the selected set (+ lower bound) exceeds or equals best solution so far, return from this level of recursion. If no elements left to be covered, declare selected set as the best solution recorded.
- (c) Select (heuristically) a branching column.

Recursive Branching (Step 4) - 2

- (d) Given the selected column, recur
 - On the sub-table resulting from deleting the column and all rows covered by this column. Add this column to the selected set.
 - On the sub-table resulting from deleting the column without adding it to the selected set.

33

Example - a1

No essential primes, dominated rows or columns.

Select prime A

Example - a2

B is dominated by **C**

H is dominated by G

Remove B, H

35

Example - a3

C, G essential <u>to</u> <u>this table</u>

Selected set = {A, C, G}

Selected set = {A, C, G, E}

Example - b1

37

Espresso-Exact (1987)

Efficient lower bounding at Step 4(b) to terminate unprofitable searches high in the recursion

Size of selected set + Lower bound equals or exceeds best solution already known, quit level of recursion

Lower Bounding

Lower bound: Maximal independent set of rows all of which are pairwise disjoint

Maximal independent set = $\{1, 4, 8\}$ or $\{0, 6, 10\}$

Need to select at least one Pl/column to cover each row.

NOTE: Finding <u>maximum</u> independent set is itself worst-case exponential

3

Complexity of Q-M based Methods

- (1) There exist functions for which the number of prime implicants is O(3ⁿ) (n is number of inputs)
- (2) Given a PI table, recursive branching could require O(2^m) time (m is the number of PIs)

Current logic minimizers able to find exact solutions for functions with 20-25 input variables

⇒ Need heuristic methods for larger functions

Heuristic Logic Minimization

Presently, there appears to be a limit of ~20-25 input variables in problems that can be handled by exact minimizers

Easy for complex control logic to exceed 20- 25 input variables

HISTORY

50's	Karnaugh Map	≤ 5 variables
60's	Q-M method	< 10 variables
70's	Starner, Dietmeyer	< 15 variables
1974	MINI —	_heuristic
1980-84	ESPRESSO 🖊	approaches
1986	McBoole	< 25 variables
1987	ESPRESSO-EXACT	< 25 variables

41

Also, Multiple Output Functions

Truth table is AND-OR representation

AND)	OR
a	b	C	f g
0	1	_	1 0
0	1	1	0 1
1	0	1	0 1

What does vector 0 1 1 produce?

ON-SET of
$$f = \{0 \ 1 -, 0 \ 1 \ 1\} = \{0 \ 1 -\}$$

ON-SET of $g = \{0 \ 1 \ 1, 1 \ 0 \ 1\}$

Multiple-Output Function Primes

Same definition as in single-output case

Cube with most minterms that will intersect OFF-SET if you add any more minterms to them

f g		CUBE	<u>TYPE</u>
0000	10	0000 10	
0001	1 0	000-10	
1001	10	1001 10	
0000	0 1	1001 11	
0010		000- 11	
1001			

43

MINI

S.J. Hong, R.G. Cain, D.L. Ostapko - 1974

Final solution is obtained from initial solution by iterative improvement rather than by generating and covering prime implicants

Three basic modifications are performed

- Reduction of implicants while maintaining coverage
- Reshaping implicants in pairs
- Expansion of implicants (and removal of covered implicants)

MINI Algorithm

```
MINI (F, DC) {
                                 F is ON-SET
                                 DC is Don't Care Set
       \overline{F} = U - F
1.
                               U is universe cube
        (Cover) f = Expand f against F
2.
       p = Compute solution size
3.
       f = Reduce each cube of f
            against other cubes of F v DC
        Reshape f
4.
       f = Expand f against F
5.
        n = compute solution size
6.
       If n < p go to 3, else, exit
}
```


Expansion Example

Step 2 in MINI:

Expand f against F

f	f expande	$\mathbf{f}_{expanded}$		F	
1 0 0 1 0 1 1 0 1 1 0 1 1 0 0 0 1 0 1 0 - 1 0 0 - 1 1 1 1 0 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 1 0 1 0 1 0 0 1 1 0 1 1	1 1 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 - 1 0 1 - 0 0 0	1 1 0 0 1 0	
- 0 1 0 - 1 - 0	1 0 ———————————————————————————————————	0 1			

Order small cubes first

47

Reduction

Reduce the size (in the sense of the number of minterms/vertices that it covers) of cubes in f without affecting coverage

The smaller the size of the cube, the more likely it will be covered by an expanded cube

Reduction Examples

Reducing covers:

Reshaping

Attempt to change the shape of the cubes without changing coverage or number

Reshaping transforms a pair of cubes into another pair such that coverage is unaffected (perturbs solution so next expand does things differently)

50

53

Example - 3

55

Example - 5

Summary of 2-level

- 2-level optimization is very effective and mature. Expresso (developed at Berkeley) is the "last word" on the subject
- 2-level optimization is directly useful for PLA's/PLD's these were widely used to implement complex control logic in the early 80's they are rarely used these days
- 2-level optimization forms the theoretical foundation for multilevel logic optimization
- 2-level optimization is useful as a subroutine in multilevel optimization