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Schematic Entry Era

Given:

+ Gate-level schematic entry editor

+ Gate-level simulator (we haven’t talked about this)
+ Gate level static-timing analyzer

* Netlist > Layout flow

* We can (and did) build large-scale integrated (35,000 gate)
circuits

+ EDA vendors provided front-end tools and ASIC vendor (e.g.
LSI Logic) provided back-end flow

* But ... It may be much more natural, and productive, to
describe complex control logic by Boolean equations than by
a schematic netlist of gates
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For example: traffic light controller
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As a State transition diagram

STI/Restart
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Boolean Logic Equations

J, =Ae(Sen o LTI +Sen + LTI
K,=Jy =K, =AeSTI

CHWG =AeB

CHWY =AeB
CHWR =B
CFRG = A B
CFRY = AeB
CFRR =B

Restart = A eSen e LTI + A e BeSen + A ¢ STI
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Synthesize Logic to Implement equations
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Physically Implement: AND-OR and NOR-NOR PLAs
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Logic increases with the number of product terms
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Early “Synthesis” Flow
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Key Technology: SOP Logic Minimization

Can realize an arbitrary logic function in
sum-of-products or two-level form

FiI=AB+ABD+ABCD
+ABCD+AB+ABD

FI=B+D+AC+AC

Of great interest to find a minimum sum-of-
products representation
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Definitions - 1

Basic definitions:

don’t care — aka “X”

Let B={0,1} and Y ={0, 1, 2}
Input variables: X, X, ... X,
Output variables: Y,, Y, ... Y,
A logic function ff (or Boolean function,

switching function) in n inputs and m
outputs is the map

f: B" ——— Y"
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Definitions - 2

If b € B" is mapped to a 2 then function is
incompletely specified, else completely
specified

For each output we define:

ON-SET,; < B", the set of all input
values for which ff,(x) = 1

OFF-SET, = B", the set of all input values

for which ff,(x) =0

DC-SET, <= B", the set of all input values

for which ff,(x) = 2
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The Boolean n-Cube, B"

. o I:I
B? B!
B2

3
B B4

e B={0,1}

e B2=1{0,1}x{0,1} ={00,01,10,11}
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Literals

A literal is a variable or its negation ¥ ¥

It represents a logic function

f= X4 = X1
o ——
X Green — ON-set x.l
1 Red — OFF-set
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Boolean Formulas

Boolean functions can be represented by formulas
defined as catenations of

e parentheses - (, )
. literals - =, y, 2, 7.7, %
o Boolean operators - + (OR), x (AND)

. complementation - e.g. =+ ¥

Examples: f = @1 XxT2+7T1 X a2
= (21 +x2) x (T1 +Tp)
h = a+bxec
= ax(b+72

We will usually replace x by catenation, e.g. axb — ab.

N O
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Example Boolean Function

EXAMPLE: Truth table form of an

incompletely specified function
ff: B> ——> Y2

X1 X2 X3 Y1 Y2
000 1 1
001 10
010 0 1
01 1 0 1
100 10
101 1 2
110 1 1
11 1 2 1
Y,: ON-SET, = {000, 001,100, 101, 110}
OFF-SET, = {010,011}
DC-SET, = {111}
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Cube Representation

Inputs  Outputs

Fi= AB+ABD+ABCD 8‘1"; 1
+ABCD+AB+ABD 0L
1110 1

10-- 1

11-1 1

_ _ 0-- 1
F1=B+D+AC+AC 11
T 0-0- 1

1-1- 1

minimum representation

Operations on Logic Functions

(1) Complement: f —> f
interchange ON and OFF-SETS

(2) Product (or intersection or logical AND)
h=fegorh=fng

(3) Sum (or union or logical OR):
h=f+gorh=fug

(4) Difference h=f-g=fng

K 18
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Prime Implicants

A cube p is an implicant of f if it does not
intersect the OFF-SET of f

P < fon U fpc (or p N fope = 0)

A prime implicant of f is an implicant p such
that

(1) No other implicant q is such that q o p
in the sense that g covers all vertices of p

(2) foc P

A minterm is a fully specified implicant
e.g., 011,111 (not 01-)

N O

.

Examples of Implicants/Primes

X; X X3 Yy
000 1
00 1 1
010 0
011 0
10 0 1
10 1 1
11 0 1
11 1 2

000, 00- are implicants, but not primes ( -0-)
1-1

0-0

20
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Prime and Irredundant Covers

A cover is a set of cubes C such that
C o fon and
CcfonUfpe

All of the ON-set is covered by C
C is contained in the ON-set and Don’t Care Set

A prime cover is a cover whose cubes are all prime
implicants

An irredundant cover is a cover C such that

removing any cube from C results in a set of
cubes that no longer covers the function

21
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Minimum covers

A minimum cover is a cover of minimum
cardinality

Theorem: A minimum cover can always be
found by restricting the search to prime
and irredundant covers.

Given any minimum cover C
(a) if redundant, not minimum

(b) if any cube q is not prime, replace q

with prime p o q and it is a minimum
prime cover

22
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Example Covers

X1X2X3Y1
000 1
00 1 1
010 0
011 0
10 0 1
10 1 1
11 0 1
11 1 2

is a cover. Is it prime?
Is it irredundant?

- -0
00
]

What is a minimum prime and
irredundant cover for the function?

23
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Example Covers

X1X2X3Y1
000 1
00 1 1
010 0
011 0
10 0 1
10 1 1
11 0 1
111 2

00-

10- isacover. Isitprime?

11- Is it irredundant?
-0 -

11- isacover. Isitprime?
Is it irredundant?
Is it minimum?

What is a minimum prime and
irredundant cover for the function?

24
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The Quine - McCluskey Method

Step 1: List all minterms in ON-SET
and DC-SET
Step 2: Use a prescribed sequence of

steps to find all the prime
implicants of the function

N O
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Step 3: Construct the prime implicant
table

Step 4: Find a minimum set of prime
implicants that cover all the
minterms

25
Example

0 0000 | 0,8 000 ® | 8,9,10,11 10-®

5 0101 | 57 01-1 @ | 10,11,1415  1-1-®

7 0111 | 7,15 111 ©

8 1000 | 8,9 100-

9 1001 8,10 10-0
10 1010 9,11 10-1
11 1011 10,11 101-
14 1110 10,14 1-10
15 1111 11,15 1-11
14,15 111-

@ © @ @ are prime implicants

26
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Prime Implicant Table

A BCDE

0 X

5 X

7 X X
Minterms 8 X X
(ON-SETonly) o9 X

10, X X

11| X X

14| X

15| X X

X’s indicate minterms covered by Pls

27
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Essential Prime Implicants

2N

A BCDE
X

0

5 X
7 X X
8

X

XX XX

XXX X

X

Row with a single X identifies an essential prime
implicant (EPI)

Essential PI's E, D, B, A = Form minimum cover

L m
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Dominating Rows

In general EPIs do not form a cover

At Step 4, we need to select Pls to add to
the EPIs so as to form a minimum cover

A BCDFG

N
NS
XXX X
X X X
XXX
XX

Row 9 dominates 8
Row 25 dominates 24

29

Can remove 8 since covering 9 implies covering of 8

N O
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Dominating Columns

N
NS
XXX X
X X X
XXX
XX
XX

F dominates D

Can remove D since F covers all minterms D
covers

Can this happen in the original table?

May happen after removal of EPIs

30
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Step 4 Issues

Removal of dominating columns or
dominated rows may introduce columns
with single X’s.

—Need to iterate

A cover may still not be formed after all
essential elements and dominance
relations have been removed

—Need to branch over possible
solutions

31
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Recursive Branching (Step 4)

(@) Select EPIs, remove dominated columns
and dominating rows iteratively till table
does not change

(b) If the size of the selected set (+ lower
bound) exceeds or equals best solution
so far, return from this level of
recursion. If no elements left to be
covered, declare selected set as the
best solution recorded.

(c) Select (heuristically) a branching column.

32
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Recursive Branching (Step 4) - 2

(d) Given the selected column, recur

—On the sub-table resulting from
deleting the column and all rows
covered by this column. Add this
column to the selected set.

—On the sub-table resulting from
deleting the column without adding it
to the selected set.

33
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Example - a1

AB CDEFGH
0 X X
1 X X
5 X X
7 X X
8 X X
10 X X
14 X X
15 X X

No essential primes, dominated rows or
columns.

Select prime A

34

2N

Convriaht © 2000 K Keutzer



Example - a2

DE FGH
Selected set
X ={A}
X X
X

B C
X X
X

X
X

- -
b OO ~NO

X
X X

B is dominated by C
H is dominated by G

Remove B, H

35
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Example - a3

C DEFG C, G essential to
5 X this table
7| X X
8 X Selected set
10 X X —
o1 <X (A C, G}
15 X X

D EF Selected set
14, X X ={A, C, G, E}
15/ X X

36
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Example - b1

0 BCDEFGH Selected set={}
X

1] X Essential primes

5/ X X in this table are B, H
7 X X

8 X X Selected set = {B, H}
10 X X
14 X X
15 XX

Selected set
={B, H, D, F}

37
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Espresso-Exact (1987)

Efficient lower bounding at Step 4(b) to terminate
unprofitable searches high in the recursion

Include A ~..Discard A

A

Include B Discard B

Compute lower

Include C - bound of 9
K

Obtain cover

with cost 10

Size of selected set + Lower bound equals or
exceeds best solution already known, quit level
of recursion

38
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Lower Bounding

ABCDEF_
0 X

1 X X
4

6 X

8 X

10 X X
12 X X

Lower bound: Maximal independent set of rows all of which are
pairwise disjoint

Maximal independent set = {1, 4, 8} or {0, 6, 10}
Need to select at least one Pl/column to cover each row.

NOTE: Finding maximum independent set is itself worst-case
exponential

39
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Complexity of Q-M based Methods

(1) There exist functions for which the
number of prime implicants is O(3") (nis
number of inputs)

(2) Given a Pl table, recursive branching could
require O(2™) time (m is the number of Pls)

Current logic minimizers able to find exact
solutions for functions with 20-25 input variables

= Need heuristic methods for larger
functions

40
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Heuristic Logic Minimization

Presently, there appears to be a limit of ~20-25 input
variables in problems that can be handled by exact

minimizers
Easy for complex control logic to exceed 20- 25 input
variables
HISTORY

50’s Karnaugh Map < 5 variables
60’s Q-M method < 10 variables
70’s Starner, Dietmeyer <15 variables
1974 MINI z’iheuristic
1980-84 ESPRESSO approaches
1986 McBoole < 25 variables
1987 ESPRESSO-EXACT < 25 variables

41
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Also, Multiple Output Functions

Truth table is AND-OR representation

AND OR
abc f g
01 - 10
011 0 1
1 0 1 01

What does vector 011 produce?
ON-SETof f = {01,011} = {01-}
ON-SETof g= {011,101}

42
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Multiple-Output Function Primes

Same definition as in single-output case

— Cube with most minterms that will intersect OFF-SET
if you add any more minterms to them

fo CUBE TYPE
0000 10 0000 10
0001 10 000- 10
1001 10 1001 10
0000 01 1001 11
0010 01 000- 11
1001 01

43
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MINI

S.J. Hong, R.G. Cain, D.L. Ostapko - 1974

Final solution is obtained from initial solution by
iterative improvement rather than by generating
and covering prime implicants

Three basic modifications are performed
— Reduction of implicants while
maintaining coverage
—Reshaping implicants in pairs

— Expansion of implicants (and
removal of covered implicants)

44
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MINI Algorithm

MINI (F, DC) { F is ON-SET
DC is Don’t Care Set

1. F=U-F U is universe cube

2, (Cover) f = Expand?against F
p = Compute solution size

3. f = Reduce each cube of f
against other cubes of F v DC

4. Reshape f
5. f = Expand f against F

n = compute solution size
6. Ifn<p goto3,else, exit
}

45
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Example: Expansion

Consider F(a,b,¢c) = (f,d,r), where f = {abg, abe, abc}
and d = {abe,abc}, and Lhe sequence of covers illus-
trated below:

e off 0 )

A= 1 .
) F = abc + abc + abc
-] / {O‘

e don’t care EXPAND abc — @

<

2 — -
F=a+ abc + abc

abc is redundant
ais prime

F3= a +a bE

EXPAND abc —= bc

\ 4

F4= a+bc

46
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Expansion Example

Step 2 in MINI:

Expand f against F

f fexpanded

1001 01 1001 01 1110
0110 10—>0 -10 10 0101
1101 10 1101 10 0010
1000 10——>10-0 10 0001
1010 01 1010 01 0000
-100 10 -100 10 -101
-111 01— 11 11 ~000
1011 01

-111 10

-010 10

-1-0 01 1-0 01

-0-1 10 -0-1 10

Order small cubes first

|

OO OO
SV w PGSV w Y -]

47

N O

.

Reduction

Reduce the size (in the sense of the number of
minterms/vertices that it covers) of cubes in f
without affecting coverage

The smaller the size of the cube, the more likely it
will be covered by an expanded cube

48
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Reduction Examples

Reducing covers:

f 1-—- 1 100 1

-1-1 freduced -1- 1

——1 1 -—1 1
(-011 10)

4-\\

N O

.

-—-11 11 --11 11
392(1) (1)(1) -0 -1 10 -001 10
1101 10 -1-0 01 -1-0 01
10-0 10 10 -0 10 10-0 10
1010 01> -100 10—>-100 10
-100 10 0-10 10 0-10 10
- —-11 11 1101 10 1101 10
-1-0 01 1010 01 1010 01
-0 -1 10 1001 01 1001 01

Larger cubes first

49

Reshaping

Attempt to change the shape of the cubes without
changing coverage or number

Reshaping transforms a pair of cubes into another
pair such that coverage is unaffected (perturbs
solution so next expand does things differently)

50
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Reshaping Example
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A Complete Example
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Example - 2
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Example - 3
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Example - 4
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Example -5
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Summary of 2-level

2-level optimization is very effective and mature.
Expresso (developed at Berkeley) is the “last
word” on the subject

2-level optimization is directly useful for
PLA’s/PLD’s — these were widely used to
implement complex control logic in the early 80°s
— they are rarely used these days

2-level optimization forms the theoretical
foundation for multilevel logic optimization

2-level optimization is useful as a subroutine in
multilevel optimization
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