Routing in Integrated Circuits

A. Kahng
K. Keutzer
A. R. Newton

Routing Applications

Block-based

Routing Algorithms

- Global routing
- Guide the detailed router in large design
- May perform quick initial detail routing
- Commonly used in cell-based design, chip assembly, and datapath design
- Also used in floorplanning and placement

Detail routing

- Connect all pins in each net
- Must understand most or all design rules
- May use a compactor to optimize result
- Necessary in all applications

Basic Rules of Routing - 1

Photo courtesy:
Jan M. Rabaey
Anantha Chandrakasan
Borivoje Nikolic

- Wiring/routing performed in layers -$5-9$, typically only in "Manhattan" N/S E/W directions
- E.g. layer $1-\mathrm{N} / \mathrm{S}$
- Layer 2 - E/W
- A segment cannot cross another segment on the same wiring layer or ...?
- Wire segments can cross wires on other layers
- Power and ground typically have their own layers

Basic Rules of Routing - Part 2

- Routing can be on a fixed grid - or gridless
- Case 1: Detailed routing over cells
- Wiring can go over cells
- Design of cells must try to minimize obstacles to routing - I.e. minimize use of metal-1, metal-2
- Cells do not need to bring signals (i.e. inputs, outputs) out to the channel - the route will come to them

Basic Rules of Routing - Part 3

- Routing can be on a fixed grid - or gridless
- Case 2: Detailed routing only in channels
- Wiring can only go over a row of cells when there is a free track - can be inserted with a "feedthrough"
- Design may use of metal-1, metal-2
- Cells must bring signals (i.e. inputs, outputs) out to the channel through "ports" or "pins"

Global Routing

Objectives

- Minimize wire length
- Balance congestion
- Timing driven
- Noise driven
- Keep buses together
- Frameworks
- Steiner trees
- Channel-based routing
- Maze routing

Global Routing Formulation

Given (i) Placement of blocks/cells

(ii) channel capacities

Determine

Routing topology of each net

Optimize

(i) max \# nets routed
(ii) min routing area
(iii) min total wirelength

Classic terminology: In general cell design or standard cell design, we are able to move blocks or cell rows, so we can guarantee connections of all the nets ("variable-die" + channel routers).

Classic terminology: In gate-array design, exceeding channel capacity is not allowed ("fixeddie" + area routers).

Since Tangent's Tancell (~1986), and > 3LM processes, we use area routers for cell-based layout

ECE 260B - CSE 241A /UCB EECS 24411

Global Routing

- Provide guidance to detailed routing (why?)
- Objective function is application-dependent

Graph Models for Global Routing

- Global routing problem is a graph problem
- Model routing regions, their adjacencies and capacities as graph vertices, edges and weights
- Choice of model depends on algorithm
- Grid graph model
- Grid graph represents layout as a $h_{\times W}$ array, vertices are layout cells, edges capture cell adjacencies, zero-capacity edges represent blocked cells
- Channel intersection graph model for block-based design

Channel Intersection Graph

- Edges are channels, vertices are channel intersections (CI), v1 and v 2 are adjacent if there exists a channel between $\left(\mathrm{Cl}_{1}\right.$ and $\left.\mathrm{Cl}_{2}\right)$. Graph can be extended to include pins.

Global Routing Approaches

- Can route nets:
- Sequentially, e.g. one at a time
- Concurrently, e.g. simultaneously all nets
- Sequential approaches
- Sensitive to ordering
- Usually sequenced by
- Criticality
- Number of terminals
- Concurrent approaches
- Computationally hard
- Hierarchical methods used

Sequential Approaches

- Solve a single net routing problem
- Differ depending on whether net is two- or multiterminal
- Two-terminal algorithms
- Maze routing algorithms
- Line probing
- Shortest-path based algorithms
- Multi-terminal algorithms
- Steiner tree algorithms

Two-Terminal Routing: Maze Routing

- Maze routing finds a path between source (s) and target (t) in a planar graph
- Grid graph model is used to represent block placement
- Available routing areas are unblocked vertices, obstacles are blocked vertices
- Finds an optimal path
- Time and space complexity $\mathrm{O}($ height \times width $)$

Maze Routing

- Point to point routing of nets
- Route from source to sink
- Basic idea = wave propagation (Lee, 1961)
- Breadth-first search + back-tracing after finding shortest path
- Guarantees to find the shortest path
- Objective = route all nets according to some cost function that minimizes congestion, route length, coupling, etc.

4	3	2	3	4	5	6	7	8	9	10	11
3	2	1	2	3	4	5	6	7	8	9	10
2	1	(A)	1		5	6	7	8			
3	2	1	2		6	7	8	9	10	11	12
4	3	2	3							12	13
5	4	3	4		14				(B)	13	14
6	5			13	14					14	
7	6	7		11	12	13	14				
8	7	8	9	10	11	12	13	14			
9	8	9	10	11	12	13	14				

Maze Routing

- Initialize priority queue Q, source S , and sink T
- Place S in Q
- Get lowest cost point X from Q, put neighbors of X in Q
- Repeat last step until lowest-cost point X is equal to the sink T
- Rip and reroute nets, i.e., select a number of nets based on a cost function (e.g., congestion of regions through which net travels), then remove the net and reroute it
- Main objective: reduce overflow
- Edge overflow $=0$ if num_nets less than or equal to the capacity
- Edge overflow = num_nets - capacity if num_nets is greater than capacity
- Overflow $=\Sigma$ (edge overflows) over all edges

Maze Routing Cost Function and Directed Search

- Points can be popped from queue according to a multivariable cost function
- Cost = function(overflow,coupling,wire length, ...)
- Add <distance to sink> to cost function \rightarrow directed search
- Allows maze router to explore points around the direct path from source to sink first

Limiting the Search Region

- Since majority of nets are routed within the bounding box defined by S and T, can limit points searched by maze router to those within bounding box
- Allows maze router to finish sooner with little or no negative impact on final routing cost
- Router will not consider points that are unlikely to be on the route path

Problems With Maze Routing

Slow: for each net, we have to search $\mathbf{N} \times \mathbf{N}$ grid
Memory: total layout grid needs to be kept $\mathbf{N x N}$

Improvements

- Simple speed-up
- Minimum detour algorithm (Hadlock, 1977)
- Fast maze algorithm (Soukup, 1978)
- depth-first search until obstacle
- breadth-first at obstacle
- until target is reached
- Will find a path if it exists, may be suboptimal
- Typical speed-up 10-50x

Further improvements

- Maze routing infeasible for large chips
- Line search (Mikami \& Tabuchi, 1968; Hightower, 1969)
- Pattern routing

Line-Probe Algorithm

Mikami\&Tabuchi IFIPS Proc, Vol H47, pp 1475-1478, 1968

Mikami+Tabuchi's algorithm

- Generate search lines from both source and target (level-0 lines)
- From every point on the level-i search lines, generate perpendicular level-(i+1) search lines
- Proceed until a search line from the source meets a search line from a target
- Will find the path if it exists, but not guaranteed to find the shortest path

Time and space complexity: $O(L)$, where L is the number of line segments

Line-Probe Summary

- Fast, handles large nets / distances / designs
- Routing may be incomplete

Problems with Sequential Routing Algorithms

Net ordering

- Must route net by net, but difficult to determine best net ordering!
- Difficult to predict/avoid congestion

What can be done

- Use other routers
- Channel/switchbox routers
- Hierarchical routers
- Rip-up and reroute

One Layer Routing: General River-Routing

- For clock, power, ground still may need to solve single-layer routing
- Two possible paths per net along boundary
- Path = alternating sequence of horizontal and vertical segments connecting two terminals of a net
- Consider starting terminals and ending terminals
- Assume every path counter-clockwise around boundary

One Layer Routing: General River-Routing

- Create circular list of all terminals ordered counterclockwise according to position on boundary

One Layer Routing: General River-Routing

- Boundary-packed solution
- Flip corners to minimize wire length

Channel vs. Switchbox

Channel

- Channel may have exits at left and right sides, but exit positions are not fixed
- We may map exits to either lower or upper edge of a channel
- One dimensional problem

Switch box

- Terminal positions on all four sides of a switchbox are fixed
- Two dimensional problem

Switchbox routing is more difficult

Channel Routing Problem

Input: Pins on the lower and upper edge

Output: Connection of each net
Constraints (Assumption)
(i) grid structure
(ii) two routing layers. One for horizontal wires, the other for vertical wires
(iii) vias for connecting wires in two layers

Minimize:

(i) \# tracks (channel height)
(ii) total wire length
(iii) \# vias

Channel/Switch Box Routing Algorithms

- Graph theory based algorithm Yoshimura and Kuh
- Greedy algorithm Rivest and Fiduccia
- Maze routing and its variations Lee, Robin, Soukup, Ohtsuki
- Hierarchical wire routing Burstein and Pelavin

Channel routing Channel / switchbox
and general area
routing

Trivial Channel Routing

- Assign every net its own track

Trivial Channel Routing

- Assign every net its own track
- Channel width $>\mathrm{N}$ (single output functions)
- Chip bisection $\propto \mathrm{N} \rightarrow$ chip area N^{2}

Sharing Tracks

- Want to Minimize tracks used
- Trick is to share tracks

Not that Easy

- With Two sides
- Even assigning one track/signal may not be enough

Dehon- Caltech

Not that Easy

- With Two sides

Dehon- Caltech

- Even assigning one track/signal may not be enough

Bad assignment Overlap:
A,B B,C

Not that Easy

- With Two sides

Dehon- Caltech

- Even assigning one track/signal may not be enough

Valid assignment avoids overlap

Not that Easy

- With Two sides
- Even assigning one track/signal may not be enough

There are vertical constraints on ordering

Greedy Channel Router

R.L. Rivest and C.M. Fiduccia " A Greedy Channel Router", 19th DAC, 1982 P418-424

σ A simple linear time algorithm
כ Guarantee the completion of all the nets (may extend to right-hand side of the channel)

Produce both restricted doglegs and unrestricted doglegs

Greedy Router: Rivest \& Fiduccia

- Proceed column by column (left to right)
- Make connections to all pins in that column
- Free up tracks by collapsing as many tracks as possible to collapse nets
- Shrink range of rows occupied by a net by using doglegs
- If a pin cannot enter a channel, add a track
- O(pins) time

Comments on Greedy Router (Rivest\&Fiduccia 1982)

כ Always succeeds (even if cyclic conflict is present);
כ Allows unrestricted doglegs;
σ Allows a net to occupy more than 1 track at a given column;
๘ May use a few columns off the edge;

Overview of Greedy Router

Left-to-right, Column-by-column scan

```
C: =0;
    while (not done) do
    begin
        \(\mathrm{c}:=\mathrm{c}+1\);
        complete wiring at column c;
    end;
```

In general, at a point in a net may be
(1) empty (net 5)
(2) unsplit (nets 1,4)
(3) split (net 3)
(4) completed (net2)

Parameters to Greedy Router

厅 Initial－channel－width
 icw

厅 Minimum－jog－length mjl
๘ Steady－net－constant
snc
כ Usually start icw as d．the density
厅 Mjl controls the number of vias，use a large mjl for fewer vias
๘ Snc also controls \＃of vias（typical value＝10 Why？）

Operations at Each Column

At each column，the greedy router tries to maximize the utility of the wiring produced：

A：Make minimal feasible top／bottom connections；
B：Collapse（connect）split nets；
C：Move split nets closer to one another；
D：Raise rising nets／lower falling nets，l．e．bring nets closer to destination terminal；
E：Widen channel when necessary；
F：Extend to next column；

(A) Make Minimal Feasible top/bottom Connetions

(B) Collapse/(Connect) Split Nets

(C) Move Split Nets Closer

(D) Rising/Falling

(E) Insert New Track

(F) Extend to Next Column

Clock RoutingStructures

Balanced Tree

H-Tree

Or in low performance ASIC designs a clock may be "just another net"

Clock Routing

- Multiple Clock Domains

Power Routing

Power Mesh
-Power Ring -Star Routing

Star Routing

In cases where an entire layer is devoted to power, both N/S, E/W directions may be used.

A Potpourri of Other Routing Issues

Detailed Routing Issues

- Routing completion
- Width and spacing rule
- Minimum width and spacing
- Variable width and spacing
- Connection
- Net
- Class of nets
- Tapering

Detailed Routing Issues

- Width and spacing rule

Detailed Routing Issues

Noise-driven

Quiet region
Segregation

Spacing

Shielding

Detailed Routing Issues

Shielding

Same-layer shielding
Adjacent-layer shielding

Adjacent-Layer Shielding

Detailed Routing Issues

Shielding

-Bus shielding
-Bus interleaving

Detailed Routing Issues

-Differential pair routing
-Balanced length or capacitance

Balanced length
Differential

Detailed Routing Issues

- Bus Routing

Detailed Routing Objectives

- Process antenna rule -Phase shift mask
- Other manufacturability objectives

Incremental Routing

- Re-route with minor local adjustment - Need rip-up and reroute capability - Difficult to confine perturbation when compactor is used

Current Status

- Routing is not a "showstopper" in current VLSI designs
- But ... routing is a perennial bottleneck, and therefore there's at least one new start-up every year
- Focus of start-ups is:
- Chip-level routing for assembly
- Special purpose niche routing - e.g. die to bonding pads

Summary

- Large toolset \rightarrow many algorithms
- Fortunately, most of the algorithms are simple
- Be sure you're familiar with:
- Maze Routing - Lee
- Line routing - Hightower
- Single-layer switchbox routing
- Greedy channel routing - Rivest
- Be familiar with the flow and relationship between routers

Extras

- Pattern-based routing
- Steiner Trees
- Concurrent global routing
- Yoshimura-Kuh
- Compaction
- Other Physical Issues

Pattern-Based Routing

- Restrict routing of net to certain basic templates
- Basic templates are L-shaped (1 bend) or Z-shaped (2 bends) routes between a source and sink
- Templates allow fast routing of nets since only certain edges and points are considered

Steiner Trees

Connecting Multi-Terminal Nets

In general, maze and line-probe routing are not well-suited to multi-terminal nets

Several attempts made to extend to multi-terminal nets

- Connect one terminal at a time
- Use the entire connected subtrees as sources or targets during expansion
- Ripup/Reroute to improve solution quality (remove a segment and re-connect)

- Results are sub-optimal
- Inherit time and memory cost of maze and line-probe algorithms

Steiner Tree Based Algorithms

- Tree interconnecting a set of points (demand points, D) and some other (intermediate) points (Steiner points, S)
- If S is empty, Steiner Minimum Tree (SMT) equivalent to Minimum Spanning Tree (MST)
- Finding SMT is NP-complete; many good heuristics
- SMT typically 88% of MST cost; best heuristics are within $1 / 2 \%$ of optimal on average
- Underlying Grid Graph defined by intersection of horizontal and vertical lines through demand points (Hanan grid) \rightarrow Rectilinear SMT and MST problems
- Can modify MST to approximate RMST, e.g., build MST and rectilinearize each edge

Minimum Spanning Tree (Prim's construction)

Given a weighted graph

Find a spanning tree whose weight is minimum

Prim's algorithm

start with an arbitrary node s $\mathrm{T} \leftarrow\{\mathrm{s}\}$
while T is not a spanning tree $\left\{\begin{array}{l}\text { find the closest pair } x \in V-T, y \in T \\ \text { add }(x, y) \text { to } T\end{array}\right.$

runs in $O\left(n^{2}\right)$ time
very simple to implement always gives a tree of minimum cost

Applying Spanning and Steiner Tree Algorithms

- General cell/block design: channel intersection graphs

- Standard-cell or gate-array design: RSMT or RMST in geometry or grid-graph

Concurrent Global Routing

Global Routing: Concurrent Approaches

- Can formulate routing problem as integer programming, solve simultaneously for all nets

Given
(i) Set of Steiner trees for each net
(ii) Placement of blocks/cells
(iii) Channel capacities

Determine
Select a Steiner tree for each net w/o violating channel capacities
Optimize
Min total wirelength

Yoshimura and Kuh

Horizontal Constraint Graph (HCG)

1. Node v_{i} : represents a horizontal interval spanned by net \mathbf{i}
2. There is an edge between v_{i} and v_{j} if horizontal intervals overlap
3. No two nets with a horizontal constraint may be assigned to the same track
4. Maximum clique of HCG establishes lower bound on \# of tracks: \# tracks \geq size of maximum clique of HCG

Local density at column $C, \operatorname{Id}(C)=\#$ nets split by column C
Channel Density $d=\max \operatorname{ld}(C)$ over all C
Each net spans over an interval
Horizontal Constraint Graph(HCG) is an undirected graph with: vertex : net
edge: <n_j, n_k>, if intervals I_j, I_k intersect

Vertical Constraint Graph (VCG)

1. Node: represents a net
2. Edge (a1 $\rightarrow \mathrm{a} 2$) exists if at some column:

- Net a1 has a terminal on the upper edge
- Net a2 has a terminal on the lower edge
- Edge a1 \rightarrow a2 means that Net a1 must be above Net $\mathbf{a} 2$

3. Establishes lower bound: \# tracks \geq longest path in VCG
4. VCG may have a cycle!

Doglegs in Channel Routing

Doglegs may reduce the longest path in VCG

Doglegs break cycles in VCG

Characterizing the Channel Routing Problem

Vertical constraint graph \mathbf{G}_{v}

Channel routing problem is completely characterized by the vertical constraint graph and the horizontal constraint graph.

Interval Packing

Theorem A set of intervals with density d can be packed into d tracks.
Proof: $I_{1}=(a, b) \quad I_{2}=(c, d)$
Define: $I_{1}<l_{2}$ iff $b<c$ or $I_{1}=I_{2}$

1. reflexive: $I_{1}<l_{1}$
2. anti-symmetric: $I_{1}<I_{2}, I_{2}<I_{1} \rightarrow I_{1}=I_{2}$
3. transitive: $I_{1}<I_{2}, I_{2}<I_{3} \rightarrow I_{1}<I_{3}$

Set of intervals with binary relation < forms a partially ordered set (POSET) Intervals in a single track \rightarrow form a chain Intervals intersecting a common column \rightarrow form an antichain
Dilworth's theorem (1950): If the maximum antichain of a POSET is of size d, then the POSET can be partitioned into d chains

Left-Edge Algorithm for Interval Packing

Repeat

create a new track t
Repeat
put leftmost feasible interval to \mathbf{t}
until no more feasible interval
until no more interval
Intervals are sorted according to their left endpoints

O(nlogn) time algorithm. Greedy algorithm works!

Horizontal Constraint Graph (HCG)

S Node v_{i} : represents a horizontal interval spanned by net I
σ There is an edge $b / w v_{i}$ and v_{j} if horizontal intervals overlap

σ No two nets with a horizontal constraint may be assigned to the same track
σ Maximum clique of HCG
 establishes a lower bound on \# of tracks:
\# tracks \geq maximum clique of HCG

Vertical Constraint Graph (VCG)

Node: represents a net
© edge ($\mathrm{a} 1 \rightarrow \mathrm{a} 2$): if at some column, net a1 has a terminal on the upper edge net a2 has a terminal on the lower edge
$\mathrm{a} 1 \rightarrow \mathrm{a} 2$ means that net a1 has to be above a2

Doglegs in Channel Routing

ЭDoglegs may reduce the longest path in VCG

כDoglegs break cycles in VCG

Doglegs in Channel Routing(conta)

σ Restricted Dogleg vs unrestricted dogleg

Constraint Graph Based Algorithm: "Merging of Nets" (Yoshimura \& Kuh)

- On the assumption of no cyclic constraints, nets that can be placed on the same track can be merged in the VCG, simplifying the VCG.
- Nets can be organized into zones, further simplifying the problem

Characterizing Channel Routing Problem

Vertical constraint graph $\mathbf{G}_{\mathbf{v}}$

The channel routing problem is completely characterized by the vertical constraint graph and the horizontal constraint graph.

Zone Representation of Horizontal Segments

Zones are maximum cliques in the horizontal interval graph.
Each net must be routed on a different track.

Merging of Nets

- Definition: Let i and j be nets for which the following holds:
(a) i and j are not adjacent in the HIG
(b) There is no direct path between i and j in the VCG

Then these nets can be assigned to the same track and hence they can be merged in the VCG

- Merging Operation:
(1) Combine nodes i and j into node $i \bullet j$ in VCG
(2) Update zone representation such that $i \boldsymbol{i} j$ occupies zones of i and j

Final Routing

Routing Examples by Y-K's Algorithm

number of tracks=20 maximum density $=\mathbf{2 0}$
Example 5

Deutsch's Difficult example without dogleg

Yoshimura and Kuh's Method

Source:

"Efficient Algorithms for Channel Routing"
by T. Yoshimura and E. Kuh
IEEE Trans. On Computer-Aided Design of Integrated Circuits and Systems.
Vol. CAD-1, pp25-35, Jan 1982

Compaction

Compaction

- Channel Compaction (one dimension)

Compaction

Area Compaction (1.5 or 2 dimension)
May need a lot of constraints to get desired results

Shape-based Routing

- Evolve from maze routing
- Gridless: look at actual size of each shape
- Each shape may have its spacing rule
- Good for designs with multiple width/spacing rules and other complex rules
- Slower than gridded router

Other Physical Issues

Detailed Routing Objectives

- Via selection
- Via array based on wire size or resistance
- Rectangular via rotation and offset

No rotation for a "cross" via
Rotate and offset horizontal vias

Detailed Routing Objectives

- Understand complex pin \& equivalent pin modeling

