Implementation Verification: Equivalence Checking

Prof. Kurt Keutzer
EECS
UC Berkeley

With thanks to Srinivas Devadas, MIT

Design Process

Design Verification

Implementation Verification

Manufacture Verification (Test)

 consistent with the implemented design?

Did they build what I wanted?

Implementation verification for ASIC's

Software Simulation

Simulation driver
(vectors)

Advantages of gate-level simulation

- verifies timing and functionality simultaneously
- approach well understood by designers

Disadvantages of gate-level simulation?

Software Simulation

Simulation driver
(vectors)

Simulation monitor (yes/no) and speed

Advantages of gate-level simulation

- verifies timing and functionality simultaneously
- approach well understood by designers

Disadvantages of gate-level simulation?

- computationally intensive - only 1-10 clock cycles of 100 K gate design per 1 CPU second
- incomplete - results only as good as your vector set - easy to overlook incorrect timing/behavior

Alternative - Static Sign-off

Problem: RTL to RTL Verification

After verification RTL may still be modified

- RTL level improvements for :
- performance
- power
- area
- testability

Need to verify that new RTL is correct

Problem: RTL to Gates Verification

Verify the gate level implementation is consistent with the RTL level design

Errors may have occurred due to

- synthesis (heaven forbid!!)
- manual intervention

Problem: Gates to Gates Verification

Verify the modified gate level implementation
is consistent with the RTL level design
Errors may have occurred due to

- Incorrect synthesis or module generation (heaven forbid!!)
- Test insertion
- Scan chain reordering
- Clock tree synthesis
- Post layout "tweaks"

Netlist

Implementation

Problem: Layout to Gates Verification (LVS)

Verify the modified gate level implementation is consistent with the RTL level design
Errors may have occurred due to

- Errors in physical design tools
- Manual changes in layout

Verification is primarily graphical or "topological"

netlist

physical layout

Solving Layout to Gates Verification (LVS)

Extract gate level models from physical level
Graphically compare extracted model against gate-level schematic (layout versus schematic)

Flag any discrepancies

netlist

physical layout

Solving Gates to Gates Verification

Extract combinational portions

Combinational Equivalence Checking

Given combination circuits C1 and C2/(Boolean functions B1 and B2) how can we practically prove that C 1 is equivalent to C 2 ?

Combinational Equivalence Checking

Presumes equivalence-relation given (or discovered) between sequential circuits

Approaches

- Reasoning in the propositional calculus/Satisfiability
- Set-theoretic approaches (used in 2-level examples)
- Symbolic simulation (used in 2-level examples)
- Symbolic manipulation
- graph isomorphism
- structural reductions
- Canonical forms - BDD's and variants
- Test-oriented methods
- static, dynamic learning

These techniques form the foundation of modern equivalence checking/implementation verification

2-level circuits

$$
\begin{aligned}
& (F \Leftrightarrow G) \Leftrightarrow(F \rightarrow G) \bullet(G \rightarrow F) \\
& \quad \Leftrightarrow(\bar{F} \vee G) \wedge(F \vee \bar{G})
\end{aligned}
$$

Now, treating F and G as sets of cubes we can check if

$$
(\bar{F} \cup G) \cap(F \cup \bar{G}) \Leftrightarrow 1
$$

Which is feasible for most 2-level circuits/SOP expressions/DNF formulas
Worked well in the espresso era - doesn't generalize to multilevel

Multilevel: Structural Methods

unmapped circuit 1

Combinational circuit 2

unmapped circuit 2

Compare them as graphs
Looks tough - why?
Turns out to be easy - why?

Structural Methods

More powerful: Testing

Given two single-output circuits A and B
Are A and B equivalent can be posed as: Is there a test for Fs s-a-0?

If $\mathrm{Fs} \mathrm{s}-\mathrm{a}-0$ is redundant, $A \equiv B$ else test vector produces different outputs for A and B.

SAT Again

This time ask whether there is an input on which Circuit 1 and Circuit 2 differ? This time we don't expect one!

More powerful: Comparison Mitre

Canonical Forms: Binary Decision Tree

Do not have to store entire set of nodes, but have to enumerate them (slight improvement over two-level tautology).

Decision Graph

Share nodes in tree \Rightarrow graph.

Definition of a Binary Decision Diagram

A Binary Decision Diagram having root vertex v denotes a Boolean function f_{v}

1. If v is a terminal vertex:
(a) if value $(v)=1$, then $f_{v}=1$
(b) if value $(v)=0$, then $f_{v}=0$
2. If v is a nonterminal vertex with index(v) $=n$ then f_{v} is the function:
$f_{v}\left(X_{1}, \ldots, X_{n}\right)=!f_{\text {oow(v) }}\left(X_{1}, \ldots, X_{n-1}\right)+f_{\text {nigh(v) }}\left(X_{1}, \ldots, X_{n-1}\right)$

Definition of an Ordered BDD

A Binary Decision Diagram is ordered iff:

1. If v is a non-terminal vertex:
(a) if low(v) is a non-terminal then, index(v) < index(low(v)) and
(b) if $\operatorname{high}(v)$ is a non-terminal then, index(v) < index(high(v)) and

This property implies the property of freedom in BDDs: In traversing any path from a vertex in a OBDD to its root then we encounter each decision variable at most once.

Ordered Binary Decision Diagram

$$
f=x_{1} x_{2}+x_{3}
$$

$$
f=x_{1} \bar{x}_{2} x_{3}+x_{1} x_{2} x_{3}+\bar{x}_{1} x_{2} x_{3}
$$

Inputs satisfy ordering restriction. Each node/vertex vin the graph has index(v). Two children are Iow(v) and high(v). 0 and \square are terminal vertices, others are non-terminal.

```
index(v)<index(low(v)) for all v
index(v) < index(high(v))
```


Ordered BDDs Enough?

Storage is always a problem for Ordered Binary Decision Diagram (OBDD) can we simplify them further?

Reduced, Ordered BDDs

An Ordered Binary Decision Diagram (OBDD) may still have "redundant"' vertices.
Definition: An OBDD is reduced, if it contains no vertex v with low(v) = high(v), nor does it contain distinct vertices v and v ' such that the subgraphs rooted by v and v ' are isomorphic.

Can reduce an OBDD in $O(|G| \log |G|)$ time.

Some Properties of a ROBDD

Proof that ROBDDs are canonical - 1

Theorem (R. Bryant): If G, G' are ROBDD's of a Boolean function f with k inputs then G and G^{\prime} are identical.

Base Case: $i=0$. f has 0 inputs. f can be the 0 or 1 ROBDD. In either case G and G^{\prime} are identical.

Induction Hypothesis: Suppose that for any Boolean function f with $\mathrm{i}<\mathrm{k}$ inputs then if $\mathrm{H}, \mathrm{H}^{\prime}$ are each ROBDD, with the same ordering, of the Boolean function f then H, H^{\prime} are identical.
Let G, G be ROBDDs for f under the same ordering.
Let x_{i} be the input with lowest index (I.e. the root of the ROBDD) in the ROBDDs G, G'

Proof that ROBDDs are canonical -2

By hypothesis, $\mathrm{f0} \equiv \mathrm{f} 0^{\prime} \mathrm{f} 1 \equiv \mathrm{f} 1^{\prime}$.
Let us consider a number of cases regarding sharing between $\mathrm{f0}$, f 1 , and $\mathrm{f0}^{\prime}$, $\mathrm{f} 1^{\prime}$

If there is no sharing of vertices between $\mathrm{f0} 0 \mathrm{f} 1$ and f 0 ', f1', then ...

Proof that ROBDDs are canonical -2

By hypothesis, $\mathrm{f0} \equiv \mathrm{f} 0^{\prime} \mathrm{f} 1 \equiv \mathrm{f} 1^{\prime}$.
Let us consider a number of cases regarding sharing between f0, f1, and f0', f1'

If there is no sharing of vertices between $\mathrm{f} 0, \mathrm{f} 1$ and f 0 ', f 1 ', then G is identical to G^{\prime}.

f0, $\mathbf{f 0}^{\prime}$ identical
f1, f1' idencial
Xi identical

Proof that ROBDDs are canonical - 3

Suppose a vertex u is shared across $\mathrm{f} 0, \mathrm{f} 1$.

G

G'

Then if there is a corresponding single u' shared in fO^{\prime}, f 1 ' then G , and G^{\prime} are identical.

Proof that ROBDDs are canonical - 3

Suppose a vertex u is shared across $\mathrm{f} 0, \mathrm{f} 1$.

Then if there is a corresponding single u' shared in f0', f1' then G, and G' are identical.

By the induction hypothesis the bdd rooted in u, u are the same

Proof that ROBDDs are canonical - 4a

Alternatively, if u in G is realized as two (or more) vertices u', $^{\prime}$ ', in G', then G, G' are not identical:

G

G'

What about this case?

Proof that ROBDDs are canonical - 4b

Alternatively, if u in G is realized as two (or more) vertices u', u', in G', then G, G' are not identical:

G

But the ROBDDs rooted at u', u"' both realize the same Boolean function with the same ordering.
So G^{\prime} is not reduced because there are two such vertices in G^{\prime}. But this contradicts the assumption that G, G' are each ROBDDs.

Therefore, in each case G is identical to G'. Therefore ROBDDs are a canonical representation.

ROBDDs are Canonical - use 1

Given an ordering, a logic function has a unique ROBDD.

Given two circuits, checking their equivalence reduces to a Directed Acyclic Graph isomorphism check between their respective ROBDDs

- can be done in linear time in $\left|\mathbf{G}_{1}\right|\left(=\left|\mathbf{G}_{2}\right|\right)$.
- constructing ROBDD for a given function and ordering could take exponential time.

ROBDD - approach 2

Given two single-output circuits A and B

What is the ROBDD of this function? If 0 then circuits A and B are equivalent Else they are not

ROBDD Construction

Given ordering and multilevel network.
ROBDD of $a b$

Begin with ROBDDS for primary inputs

Proceed through network, constructing the ROBDD for each gate output, by applying the gate operator to the ROBDDs of the gate inputs
Kurt Keutzer Example worked through in extra slides for this lecture

Sensitivity to Ordering

Given a function with n inputs, one input ordering may require exponential \# vertices in ROBDD, while other may be linear in size.

$$
f=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}
$$

$$
x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}
$$

$$
x_{1} x_{4} x_{2} x_{5} x_{3} x_{6}
$$

Summary of ROBDD checking procedure

Given circuits C1 and C2 to be verified for equivalence A1) create the "comparison mitre" circuit D1
A2) find a variable ordering for the ROBDD for D1
A3) build the ROBDD and check for 0
or
B1) find a variable ordering for the ROBDD's of C1, C2
B2) build the ROBDD for each of C1, C2
B3) Check to see that the DAGs are isomorphic

Heuristic Input Ordering

BDD can be viewed as a multiplexor-based multilevel circuit.

Look at an (optimized) multilevel network and decide ordering for the BDD.

order $\mathrm{i}_{\mathrm{m}+1}, \mathrm{i}_{\mathrm{m}+2}$ after $i_{0}, i_{1}, \ldots, i_{m}$ since IL appear to be a good "encoding" for $\mathrm{i}_{0}, \mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{m}}$

Generalize to multiple levels.
Resolve "conflicts" heuristically.

Putting it all together

Current formula requires:

- Ability to associate FF's from the two circuits
- Exploiting structural similarity/check-points
- Applying whatever works:
- Test techniques, SAT for more regular structures
- BDD for more random
- Mix and match

Current status of equivalence checking

Equivalence checking is one of the great successes of EDA in the late 90's

Equivalence checkers are now able to routinely verify complex (>10M gate) integrated circuit designs
Coupled with static timing analysis it has enabled "static-signoff"
Current technology leaders are Encounter Conformal from Cadence (Verplex) and Formality from Synopsys. Good proprietary (e.g. IBM/verity) solutions exist
Static sign-off methodology more widely used
Successful equivalence checkers must orchestrate a number of different approaches

- syntactic equivalence
- automatic test pattern generation-like approaches
- BDD-based techniques
- pattern-reduction methods

A few open problems remain
Kưt k keqtived circuits

Open problems in implementation verification

More robust equivalence checking
Verification of equivalence between sequential circuits in which there is no obvious registerequivalence

- retimed circuits
- circuits with differing state assignments

Better diagnostics when circuits are not equivalent
Implementation verification between RTL and behavioral models

Retimed circuits

Circuits are equivalent (modulo some initial state issues) but it is not possible to show that they are equivalent using Boolean equivalence

Encoding Problems

Some logic specifications are
"symbolic" rather than binary-valued
e.g. specification for an ALU

Symbol
ADD
SUB
XOR
INC
Can assign any binary code to the symbolic values, so long as they are different

Different State Encodings

Different Encodings

Extras

Building ROBDD: Procedure Apply

Compute f_{1} <op> f_{2}
<op> can be AND, OR, XOR, XNOR, etc.
To apply the operator to the ROBDDs represented by f_{1} and f_{2}

1) If v_{1} and v_{2} are terminal vertices, simply generate a terminal vertex u with
value $(\mathrm{u})=\operatorname{value}\left(\mathrm{v}_{1}\right)<o p>\operatorname{value}\left(\mathrm{v}_{2}\right)$
2) Else if index $\left(v_{1}\right)=$ index $\left(v_{2}\right)=i$

Call algorithm apply recursively on low $\left(v_{1}\right)$ and low(v_{2}) to generate a new vertex u , low(u), $\operatorname{high}\left(\mathrm{v}_{1}\right)$ and $\operatorname{high}\left(\mathrm{v}_{2}\right)$ to generate high(u), after creating vertex u,index $(u)=i$

Procedure Apply - 2

3) If index $\left(v_{1}\right)=i$, but index $\left(v_{2}\right)>i$, then create a new vertex u having index i, and apply algorithm recursively on $\operatorname{low}\left(v_{1}\right)$ and v_{2} to generate $\operatorname{low}(u)$, and on $\operatorname{high}\left(\mathrm{v}_{1}\right)$ and v_{2} to generate high(u).
4) If index $\left(v_{2}\right)=i$, but index $\left(v_{1}\right)>i$, then create a new vertex u having index i, and apply algorithm recursively on $\operatorname{low}\left(v_{2}\right)$ and v_{1} to generate $\operatorname{low(u)\text {,}}$ and on $\operatorname{high}\left(\mathrm{v}_{2}\right)$ and v_{1} to generate high(u).
$\mathrm{O}\left(\mathrm{G}_{1} \cdot \mathrm{G}_{2}\right)$ complexity (though recursive).
"Multiplying" the two graphs.

ROBDD Construction - 1

Given ordering and multilevel network.
ROBDD of $a b$

Begin with ROBDDS for primary inputs

Proceed through network, constructing the ROBDD for each gate output, by applying the gate operator to the ROBDDs of the gate inputs

ROBDD Construction - 2a

Given ordering <<a, $1>,<b, 2>,<c, 3>,<d, 4>,<0,100>,<1,100 \gg$ and multilevel network.

v1

Build ROBDD of a * b using apply
If index $\left(v_{1}\right)=i$, but index $\left(v_{2}\right)>i$, then create a new vertex u having index i, and apply algorithm recursively on $\operatorname{low}\left(v_{1}\right)$ and v_{2} to generate $\operatorname{low}(u)$, and on high $\left(\mathrm{v}_{1}\right)$ and v_{2} to generate high(u).

ROBDD Construction - 2c

Given ordering <<a, 1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>>> and multilevel network.

Build ROBDD of a * busing apply
v1 v2

If index $\left(v_{1}\right)=i$, but index $\left(v_{2}\right)>i$, then create a new vertex u having index i, and apply algorithm recursively on low(v1) and v 2 to generate low(u), and on high $\left(\mathrm{v}_{1}\right)$ and v_{2} to generate high(u$)$.

ROBDD Construction - 2d

Given ordering $\langle<a, 1\rangle,\langle b, 2\rangle,\langle c, 3\rangle,\langle d, 4\rangle,<0,100\rangle,\langle 1,100 \gg$ and multilevel network.

v1
v2

AND

If index $\left(v_{1}\right)=i$, but index $\left(v_{2}\right)>i$, then create a new vertex u having index i, and apply algorithm recursively on $\operatorname{low}\left(v_{1}\right)$ and v_{2} to generate $\operatorname{low}(u)$, and on $\operatorname{high}\left(\mathrm{v}_{1}\right)$ and v_{2} to generate high(u).

ROBDD Construction - 3a

Given ordering <<a, 1>,<b, $2>,<c, 3>,<d, 4>,<0,100>,<1,100 \gg$ and multilevel network.

Build ROBDD of a * b using apply
If index $\left(v_{2}\right)=i$, but index $\left(v_{1}\right)>i$, then create a new vertex u ' having index i, and apply algorithm recursively on $\operatorname{low}\left(v_{2}\right)$ and v_{1} to generate $\operatorname{low}\left(u^{\prime}\right)$, and on high $\left(v_{2}\right)$ and v_{1} to generate high $\left(u^{\prime}\right)$.

ROBDD Construction - 3b

Given ordering <<a, 1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>>> and multilevel network.

v1

0

AND

 v2

Build ROBDD of a * busing apply
If index $\left(v_{2}\right)=\mathrm{i}$, but index $\left(\mathrm{v}_{1}\right)>\mathrm{i}$, then create a new vertex u ' having index i, and apply algorithm recursively on $\operatorname{low}\left(v_{2}\right)$ and v_{1} to generate $\operatorname{low}\left(u^{\prime}\right)$, and on $\operatorname{high}\left(v_{2}\right)$ and v_{1} to generate high $\left(u^{\prime}\right)$.

ROBDD Construction - 3c

Given ordering <<a, 1>,<b, $2>,<c, 3>,<d, 4>,<0,100>,<1,100 \gg$ and multilevel network.

If index $\left(v_{2}\right)=i$, but index $\left(v_{1}\right)>i$, then create a new vertex u ' having index i, and apply algorithm recursively on $\operatorname{low}\left(v_{2}\right)$ and v_{1} to generate $\operatorname{low}\left(u^{\prime}\right)$, and on high $\left(v_{2}\right)$ and v_{1} to generate high $\left(u^{\prime}\right)$.

ROBDD Construction - 3d

Given ordering $\langle<a, 1\rangle,\langle b, 2\rangle,\langle c, 3\rangle,\langle d, 4\rangle,<0,100\rangle,\langle 1,100 \gg$ and multilevel network.

ROBDD Construction - 3e

Given ordering <<a, 1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>>> and multilevel network.

v1
v2
0

high(v2)

Build ROBDD of a * busing apply
If index $\left(v_{2}\right)=i$, but index $\left(v_{1}\right)>i$, then create a new vertex u ' having index i, and apply algorithm recursively on low(v2) and v1 to generate low(u^{\prime}), and on high $\left(v_{2}\right)$ and v_{1} to generate high (u^{\prime}).

ROBDD Construction - 3 f

Given ordering $\langle<a, 1\rangle,\langle b, 2\rangle,\langle c, 3\rangle,\langle d, 4\rangle,<0,100\rangle,\langle 1,100 \gg$ and multilevel network.
Build ROBDD of a * b using apply
v1 v2
0 AND $1=0$
high(u')
If v_{1} and v_{2} are terminal vertices, simply generate a terminal vertex u with value $(u)=\operatorname{value}\left(v_{1}\right)<o p>\operatorname{value}\left(v_{2}\right)$

ROBDD Construction - 3g

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>>> and multilevel network.

ROBDD Construction - 4a

Given ordering <<a, 1>,<b, $2>,<c, 3>,<d, 4>,<0,100>,<1,100 \gg$ and multilevel network.

After returning from recursion:
If index $\left(v_{1}\right)=\mathrm{i}$, but index $\left(\mathrm{v}_{2}\right)>\mathrm{i}$, then create a new vertex u having index i, and apply algorithm recursively on $\operatorname{low}\left(v_{1}\right)$ and v_{2} to generate $\operatorname{low}(u)$, and on $\operatorname{high}\left(\mathrm{v}_{1}\right)$ and v_{2} to generate high(u$)$.

ROBDD Construction - 4b

Given ordering <<a, 1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>>> and multilevel network.

Build ROBDD of a * b using apply

If index $\left(\mathrm{v}_{1}\right)=\mathrm{i}$, but index $\left(\mathrm{v}_{2}\right)>\mathrm{i}$, then create a new vertex u having index i, and apply algorithm recursively on low(v1) and v 2 to generate low(u), and on $\operatorname{high}\left(\mathrm{v}_{1}\right)$ and v_{2} to generate high (u).

ROBDD Construction - 4c

Given ordering $\langle<a, 1\rangle,\langle b, 2\rangle,\langle c, 3\rangle,\langle d, 4\rangle,<0,100\rangle,\langle 1,100 \gg$ and multilevel network.

high(u')

ROBDD Construction - 4d

Given ordering <<a, 1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>>> and multilevel network.

v1
v2
1
AND

Build ROBDD of a * b using apply
If index $\left(v_{2}\right)=i$, but index $\left(v_{1}\right)>i$, then create a new vertex u ' having index i, and apply algorithm recursively on low(v2) and v1 to generate low(u^{\prime}), and on high(v2) and v 1 to generate high($\left.\mathrm{u}^{\prime}\right)$.

ROBDD Construction - 4e

Given ordering $\langle<a, 1\rangle,\langle b, 2\rangle,\langle c, 3\rangle,\langle d, 4\rangle,<0,100\rangle,\langle 1,100 \gg$ and multilevel network.

v1 v2

1
AND

Build ROBDD of a * b using apply
If index $\left(v_{2}\right)=i$, but index $\left(v_{1}\right)>i$, then create a new vertex u ' having index i, and apply algorithm recursively on $\operatorname{low}\left(v_{2}\right)$ and v_{1} to generate low(u^{\prime}), and on $\operatorname{high}\left(v_{2}\right)$ and v_{1} to generate high $\left(u^{\prime}\right)$.

ROBDD Construction - 4f

Given ordering <<a, 1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>>> and multilevel network.

v1		v2
1	AND	0

If index $\left(v_{2}\right)=i$, but index $\left(v_{1}\right)>i$, then create a new vertex u ' having index i, and apply algorithm recursively on low $\left(v_{2}\right)$ and v_{1} to generate low(u^{\prime}), and on high $\left(v_{2}\right)$ and v_{1} to generate high($\left.u^{\prime}\right)$.

ROBDD Construction - 4 g

Given ordering $\langle<a, 1\rangle,\langle b, 2\rangle,\langle c, 3\rangle,\langle d, 4\rangle,<0,100\rangle,\langle 1,100 \gg$ and multilevel network.

ROBDD Construction - 4h

Given ordering <<a, 1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>>> and multilevel network.

Build ROBDD of a * b using apply

If v_{1} and v_{2} are terminal vertices, simply generate a terminal vertex u with value $(u)=\operatorname{value}\left(v_{1}\right)<o p>\operatorname{value}\left(v_{2}\right)$
low(u')

ROBDD Construction - 4i

Given ordering $\langle<a, 1\rangle,\langle b, 2\rangle,\langle c, 3\rangle,\langle d, 4\rangle,<0,100\rangle,\langle 1,100 \gg$ and multilevel network.

v1

1

AND

v2

high(u')

Build ROBDD of a * b using apply

If index $\left(v_{2}\right)=i$, but index $\left(v_{1}\right)>i$, then create a new vertex u ' having index i, and apply algorithm recursively on low(v2) and v 1 to generate $\operatorname{low}\left(\mathrm{u}^{\prime}\right)$, and on high $\left(v_{2}\right)$ and v_{1} to generate high $\left(u^{\prime}\right)$.

ROBDD Construction - 4j

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

Build ROBDD of a * b using apply

If v_{1} and v_{2} are terminal vertices, simply generate a terminal vertex u with
value $(\mathrm{u})=\operatorname{value}\left(\mathrm{v}_{1}\right)<o p>\operatorname{value}\left(\mathrm{v}_{2}\right)$

ROBDD Construction - 4k

Given ordering $\langle<a, 1\rangle,\langle b, 2\rangle,\langle c, 3\rangle,\langle d, 4\rangle,<0,100\rangle,\langle 1,100 \gg$ and multilevel network.

Build ROBDD of a * busing apply
v1

1

If v_{1} and v_{2} are terminal vertices, simply generate a terminal vertex u with
value $(\mathrm{u})=\operatorname{value}\left(\mathrm{v}_{1}\right)<$ op> $\operatorname{value}\left(\mathrm{v}_{2}\right)$

ROBDD Construction - 41

Given ordering <<a, 1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>>> and multilevel network.

v1

After returning from recursion:
If index $\left(v_{1}\right)=i$, but index $\left(v_{2}\right)>i$, then create a new vertex u having index i, and apply algorithm recursively on $\operatorname{low}(\mathrm{v} 1)$ and v 2 to generate $\operatorname{low}(\mathrm{u})$, and on high $\left(\mathrm{v}_{1}\right)$ and v_{2} to generate high(u$)$.

ROBDD Construction - 4m

Given ordering <<a, 1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>>> and multilevel network.

ROBDD Construction - 4n

Given ordering <<a, 1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

Reduce
v2

ROBDD Construction - 5

Given ordering <<<a, $1>,\langle b, 2\rangle,<c, 3\rangle,<d, 4>,<0,100>,<1,100 \gg$ and multilevel network.

Reduce

Example OR'ing of ROBDDs

