

Different Ota		190
Circuit 1		
<u>Symbol</u>	<u>Operation</u>	
ADD	00	
SUB	01	Different state
XOR	10	
INC	11	circuits no longer
<u>Circuit 2</u> <u>Symbol</u> <u>Operation</u>		amenable to combinational logic equivalence checking
ADD	11	
SUB	10	
XOR	00	
INC	01	

Extras		_
Kurt Keutzer		55

- 3) If $index(v_1) = i$, but $index(v_2) > i$, then create a new vertex u having index i, and apply algorithm recursively on $low(v_1)$ and v_2 to generate low(u), and on $high(v_1)$ and v_2 to generate high(u).
- 4) If index(v₂) = i, but index(v₁) > i, then create a new vertex u having index i, and apply algorithm recursively on low(v₂) and v₁ to generate low(u), and or high(v₂) and v₁ to generate high(u).

57

O(G₁ · G₂) complexity (though recursive). "Multiplying" the two graphs.

Kurt Keutzer

