
1

1

Implementation Verification:
Equivalence Checking

Prof. Kurt Keutzer
EECS

UC Berkeley

With thanks to Srinivas Devadas, MIT

Kurt Keutzer 2

Design Process

Design : specify and
enter the design intent

Implement:
refine the
design
through all
phases

Verify:
verify the
correctness of
design and
implementation

2

Kurt Keutzer 3

Design Verification

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

specification

Is the
design

consistent
with the original
specification?

Is what I think I want
what I really want?

Kurt Keutzer 4

Implementation Verification

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

Is the
implementation

consistent
with the original
design intent?

Is what I
implemented

what I
wanted?

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

3

Kurt Keutzer 5

Manufacture Verification (Test)

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

Is the
manufactured

circuit
consistent

with the
implemented

design?

Did they
build
what I

wanted?

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

Kurt Keutzer 6

Implementation verification for ASIC’s

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

Apply gate-level
simulation (‘‘the
golden
simulator’’) at
each step to verify

functionality:
• 0-1 behavior on
regression test
set

and timing:
• maximum delay
of circuit across
critical paths

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

ASIC
signoff

4

Kurt Keutzer 7

Advantages of gate-level simulation
– verifies timing and functionality simultaneously
– approach well understood by designers

Disadvantages of gate-level simulation?

Simulation
driver

(vectors)

Simulation
monitor
(yes/no)

and
speed

Software Simulation

a

b

s

q

0

1

d

clk

Kurt Keutzer 8

Advantages of gate-level simulation
– verifies timing and functionality simultaneously
– approach well understood by designers

Disadvantages of gate-level simulation?
– computationally intensive - only 1 - 10 clock cycles of

100K gate design per 1 CPU second
– incomplete - results only as good as your vector set - easy

to overlook incorrect timing/behavior

Simulation
driver

(vectors)

Simulation
monitor
(yes/no)

and
speed

Software Simulation

a

b

s

q

0

1

d

clk

5

Kurt Keutzer 9

Alternative - Static Sign-off

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

ASIC
signoff

Use static
analysis
techniques to
verify:

functionality:
• formal
equivalence-
checking
techniques

and timing:
• use static timing
analysis –
discussed earlier
in the semester,
but don’t forget
about false paths!

Kurt Keutzer 10

Problem: RTL to RTL Verification

After verification RTL may still be modified
– RTL level improvements for :

• performance
• power
• area
• testability

Need to verify that new RTL is correct

Specification Implementation

6

Kurt Keutzer 11

Problem: RTL to Gates Verification

Verify the gate level implementation is
consistent with the RTL level design

Errors may have occurred due to
– synthesis (heaven forbid!!)
– manual intervention

HDL Design Implementation

Kurt Keutzer 12

Problem: Gates to Gates Verification

Verify the modified gate level implementation
is consistent with the RTL level design

Errors may have occurred due to
– Incorrect synthesis or module generation

(heaven forbid!!)
– Test insertion
– Scan chain reordering
– Clock tree synthesis
– Post layout “tweaks”

Netlist Implementation

7

Kurt Keutzer 13

Problem: Layout to Gates Verification (LVS)

Verify the modified gate level implementation
is consistent with the RTL level design

Errors may have occurred due to
– Errors in physical design tools
– Manual changes in layout

Verification is primarily graphical or
``topological’’

netlist physical layout

Kurt Keutzer 14

Solving Layout to Gates Verification (LVS)

Extract gate level models from physical level
Graphically compare extracted model

against gate-level schematic (layout
versus schematic)

Flag any discrepancies

netlist physical layout

8

Kurt Keutzer 15

Solving Gates to Gates Verification

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

``specification’’

implementation

Kurt Keutzer 16

Extract combinational portions

compare
combinational

portions

``spec’’

Flip-flops

Combinational
Logic

inputs outputs

``implementation’’

Flip-flops

Combinational
Logic

inputs outputs

9

Kurt Keutzer 17

Combinational Equivalence Checking

Given combination circuits C1 and C2/(Boolean
functions B1 and B2) how can we practically
prove that C1 is equivalent to C2?

Kurt Keutzer 18

Combinational Equivalence Checking

Presumes equivalence-relation given (or discovered) between
sequential circuits

Approaches
– Reasoning in the propositional calculus/Satisfiability
– Set-theoretic approaches (used in 2-level examples)
– Symbolic simulation (used in 2-level examples)
– Symbolic manipulation

• graph isomorphism
• structural reductions

– Canonical forms - BDD’s and variants
– Test-oriented methods

• static, dynamic learning
These techniques form the foundation of modern equivalence

checking/implementation verification

10

Kurt Keutzer 19

2-level circuits

Now, treating F and G as sets of cubes we can check if

)()()(FGGFGF →•→⇔⇔

)()(GFGF ∨∧∨⇔

1)()(⇔∪∩∪ GFGF
Which is feasible for most 2-level circuits/SOP

expressions/DNF formulas
Worked well in the espresso era – doesn’t generalize to

multilevel

Kurt Keutzer 20

Multilevel: Structural Methods

Combinational circuit 1

unmapped circuit 1 unmapped circuit 2

Combinational circuit 2

Compare them as graphs
Looks tough – why?
Turns out to be easy – why?

11

Kurt Keutzer 21

Structural Methods

Combinational circuit 1

unmapped circuit 1 unmapped circuit 2

Combinational circuit 2

Compare them as graphs
Looks tough – graph isomorphism
Turns out to be easy – DAGs
This helps but runs out of gas soon.

Kurt Keutzer 22

More powerful: Testing

Given two single-output circuits A and B
Are A and B equivalent can be posed as: Is

there a test for F s-a-0?

If F s-a-0 is redundant, A ≡ B else test
vector produces different outputs for A
and B.

x2

B

x4

x1

x3
A

x
s-a-0

12

Kurt Keutzer 23

SAT Again

a

b
c

d

e

f

g

h

i

1
hf if

t = 1?

This time ask whether there is an input on which Circuit 1
and Circuit 2 differ? This time we don’t expect one!

Circuit 1

Circuit 2 –
Any structural
simularities (found earlier)
are shared

Kurt Keutzer 24

More powerful: Comparison Mitre

Primary Inputs, Register and Black Box Outputs

spec implementation

COMPARE

0 or 1

13

Kurt Keutzer 25

Canonical Forms: Binary Decision Tree

Do not have to store entire set of nodes, but
have to enumerate them (slight
improvement over two-level tautology).

a
b
c
d

0 1

d

c

b

a

b

d

0

0

0

0

1

1

potentially exponential # nodes.

Kurt Keutzer 26

1

1

d

Decision Graph

Share nodes in tree ⇒ graph.

a

c

bb

c

dd

0

0

0

1

0

0
1 1

1 1

FULLY
SHARED

2N nodes

0 1 1 0

1

0

a

b

cc

dd d

0 1

1

1
00

0 0

0 11 0 01

partial
sharing

0 0 0 01 1 11 0 1 0 1

b

14

Kurt Keutzer 27

Definition of a Binary Decision Diagram
A Binary Decision Diagram having root vertex v denotes

a Boolean function fv

1. If v is a terminal vertex:
(a) if value(v) = 1, then fv = 1
(b) if value(v) = 0, then fv = 0

2. If v is a nonterminal vertex with index(v) = n then fv is
the function:

fv(x1, … , xn) = !flow(v)(x1, … , xn-1) + fhigh(v)(x1, … , xn-1)

Kurt Keutzer 28

Definition of an Ordered BDD
A Binary Decision Diagram is ordered iff:
1. If v is a non-terminal vertex:
(a) if low(v) is a non-terminal then,

index(v) < index(low(v)) and
(b) if high(v) is a non-terminal then,

index(v) < index(high(v)) and

This property implies the property of freedom in BDDs:
In traversing any path from a vertex in a OBDD to its
root then we encounter each decision variable at most
once.

15

Kurt Keutzer 29

Ordered Binary Decision Diagram

Inputs satisfy ordering restriction. Each node/vertex v in
the graph has index(v). Two children are low(v) and
high(v). 0 and 1 are terminal vertices, others are
non-terminal.

index(v) < index(low(v)) for all v
index(v) < index(high(v))

f = x1 x2 + x3 f = x1x2x3 + x1x2x3 + x1x2x3

1 1

1

3

1

0
1

0

0 1
0

0 1 0

10

0 1 0

1

1

1010

2 22

3 30

Kurt Keutzer 30

Storage is always a problem for Ordered Binary Decision
Diagram (OBDD) can we simplify them further?

Ordered BDDs Enough?

10 0 1 0

1

2 2

33

0

0 1 0

1

1

1010

f = x1x2x3 + x1x2x3
+ x1x2x3

16

Kurt Keutzer 31

An Ordered Binary Decision Diagram (OBDD) may still
have ``redundant’’ vertices.

Definition: An OBDD is reduced, if it contains no vertex
v with low(v) = high(v) , nor does it contain distinct
vertices v and v’ such that the subgraphs rooted by v
and v’ are isomorphic.

Can reduce an OBDD in O(|G| log |G|) time.

Reduced, Ordered BDDs

1

3
2

1

0

1

1

0

1

0

10 0 1 0

1

2 2

33

0

0 1 0

1

1

1010

0

f = x1x2x3 + x1x2x3
+ x1x2x3

f = x1x3 + x1x2x3

Kurt Keutzer 32

Some Properties of a ROBDD

a

b
c

d

0 1

0

0

0

0

1
1

1
1

ordering
a b c d

f = ac + abc + acd + abcd
disjoint cover

f

a
c
a
d
b
c
b
d

a
b
c
d

g

17

Kurt Keutzer 33

Proof that ROBDDs are canonical - 1
Theorem (R. Bryant): If G, G’ are ROBDD’s of a

Boolean function f with k inputs then G and G’ are
identical.

Base Case: i=0. f has 0 inputs.
f can be the 0 or 1 ROBDD.
In either case G and G’ are identical.

Induction Hypothesis: Suppose that for any Boolean
function f with i < k inputs then if H, H’ are each
ROBDD, with the same ordering, of the Boolean
function f then H, H’ are identical.

Let G, G’ be ROBDDs for f under the same ordering.

Let xi be the input with lowest index (I.e. the root of
the ROBDD) in the ROBDDs G, G’

Kurt Keutzer 34

Proof that ROBDDs are canonical -2

f0’ f1’

0 1

G’

xi

f0 f1

0 1

G
xi

By hypothesis, f0 ≡ f0’ f1 ≡ f1’.
Let us consider a number of cases regarding sharing

between f0, f1, and f0’, f1’
If there is no sharing of vertices between f0, f1 and f0’,

f1’, then …

18

Kurt Keutzer 35

Proof that ROBDDs are canonical -2

f0’ f1’

0 1

G’

xi

f0 f1

0 1

G
xi

By hypothesis, f0 ≡ f0’ f1 ≡ f1’.
Let us consider a number of cases regarding sharing

between f0, f1, and f0’, f1’
If there is no sharing of vertices between f0, f1 and f0’,

f1’, then G is identical to G’.

f0, f0’ identical
f1, f1’ idencial
Xi identical

Kurt Keutzer 36

Proof that ROBDDs are canonical - 3

Suppose a vertex u is shared across f0, f1.

Then if there is a corresponding single u’ shared in f0’,
f1’ then G, and G’ are identical.

G

u

G’

u’

19

Kurt Keutzer 37

Proof that ROBDDs are canonical - 3

Suppose a vertex u is shared across f0, f1.

Then if there is a corresponding single u’ shared in f0’,
f1’ then G, and G’ are identical.

G

u

G’

u’

By the induction hypothesis the
bdd rooted in u, u’ are the
same

Kurt Keutzer 38

Proof that ROBDDs are canonical – 4a

Alternatively, if u in G is realized as two (or more)
vertices u’,u’’, in G’, then G, G’ are not identical:

G’

u’’u’

G

u

What about this case?

20

Kurt Keutzer 39

Proof that ROBDDs are canonical – 4b
Alternatively, if u in G is realized as two (or more)

vertices u’,u’’, in G’, then G, G’ are not identical:

G’

u’’u’

G

u

But the ROBDDs rooted at u’, u’’ both realize the same
Boolean function with the same ordering.
So G’ is not reduced because there are two such
vertices in G’. But this contradicts the assumption that
G, G’ are each ROBDDs.

Therefore, in each case G is identical to G’. Therefore
ROBDDs are a canonical representation.

Kurt Keutzer 40

ROBDDs are Canonical - use 1
Given an ordering, a logic function has a unique

ROBDD.
Given two circuits, checking their equivalence reduces

to a Directed Acyclic Graph isomorphism check
between their respective ROBDDs

– can be done in linear time in G1 (= G2).
– constructing ROBDD for a given function and ordering could

take exponential time.

21

Kurt Keutzer 41

ROBDD - approach 2

Given two single-output circuits A and B

x2

B

x4

x1

x3
A

What is the ROBDD of this function?
If 0 then circuits A and B are equivalent
Else they are not

Kurt Keutzer 42

Given ordering and multilevel network.

Proceed through network, constructing the ROBDD for
each gate output, by applying the gate operator to the
ROBDDs of the gate inputs

Example worked through in extra slides for this lecture

ROBDD Construction

ROBDD of a b

a b + c
a
b

c

d

a b
0 1 0 1 Begin with ROBDDS

for primary inputs
0 1 0 1

22

Kurt Keutzer 43

Sensitivity to Ordering

Given a function with n inputs, one input
ordering may require exponential # vertices
in ROBDD, while other may be linear in size.

f = x1 x2 + x3 x4 + x5 x6

1

2
3

4
5

0 1

6

1
4

2
4

5

2

6

2

5

2

3
5

3

x1 x2 x3 x4 x5 x6 x1 x4 x2 x5 x3 x6

5

0 1

Kurt Keutzer 44

Summary of ROBDD checking procedure

Given circuits C1 and C2 to be verified for equivalence
A1) create the ``comparison mitre’’ circuit D1
A2) find a variable ordering for the ROBDD for D1
A3) build the ROBDD and check for 0
or
B1) find a variable ordering for the ROBDD’s of C1, C2
B2) build the ROBDD for each of C1, C2
B3) Check to see that the DAGs are isomorphic

23

Kurt Keutzer 45

Heuristic Input Ordering

BDD can be viewed as a multiplexor-based
multilevel circuit.

Look at an (optimized) multilevel network and
decide ordering for the BDD.

Generalize to multiple levels.
Resolve “conflicts” heuristically.

...

IL

i0 i1 im

im+1 im+2

out

order im+1, im+2
after i0, i1, …, im
since IL appear to be
a good “encoding”
for i0, i1, …, im

Kurt Keutzer 46

Putting it all together

Current formula requires:
• Ability to associate FF’s from the two circuits
• Exploiting structural similarity/check-points
• Applying whatever works:

– Test techniques, SAT for more regular structures
– BDD for more random
– Mix and match

24

Kurt Keutzer 47

Solving RTL-to-Gates Verification

RTL
Synthesis

HDL
``specification’’

netlist

Step 1:
(formally)
translate

HDL
source

into
netlist

Combinational
logic

clkclk

Combinational
logic

clkclk

Step 2:
Perform

gates-to-gates
verification

gate-level
implementation

Kurt Keutzer 48

Solving RTL-to-RTL Verification

RTL
Synthesis

HDL
``specification’’

netlist

Step 1:
(formally)
translate
both HDL
sources

into
netlists

Combinational
logic

clkclk

RTL
Synthesis

HDL
implementation

netlist

Combinational
logic

clkclk

Step 2:
perform
gate-to-

gate
verification
on netlists

25

Kurt Keutzer 49

Current status of equivalence checking
Equivalence checking is one of the great successes of EDA in the

late 90’s
Equivalence checkers are now able to routinely verify complex

(>10M gate) integrated circuit designs
Coupled with static timing analysis it has enabled “static-signoff”
Current technology leaders are Encounter Conformal from

Cadence (Verplex) and Formality from Synopsys. Good
proprietary (e.g. IBM/verity) solutions exist

Static sign-off methodology more widely used
Successful equivalence checkers must orchestrate a number of

different approaches
– syntactic equivalence
– automatic test pattern generation-like approaches
– BDD-based techniques
– pattern-reduction methods

A few open problems remain
• retimed circuits

Kurt Keutzer 50

Open problems in implementation verification

More robust equivalence checking
Verification of equivalence between sequential

circuits in which there is no obvious register-
equivalence

– retimed circuits
– circuits with differing state assignments

Better diagnostics when circuits are not
equivalent

Implementation verification between RTL and
behavioral models

26

Kurt Keutzer 51

Retimed circuits

a
b

s

q
0
1

d

clk

a

b

s

q
0
1

d

clk

Circuits are equivalent (modulo some initial state issues)
but it is not possible to show that they are equivalent using
Boolean equivalence

Kurt Keutzer 52

Encoding Problems

Some logic specifications are
“symbolic” rather than binary-valued

e.g. specification for an ALU
Symbol Operation
ADD +
SUB -
XOR Exclusive-OR
INC Increment

Can assign any binary code to the
symbolic values, so long as they are
different

27

Kurt Keutzer 53

Different State Encodings
Circuit 1
Symbol Operation
ADD 00
SUB 01
XOR 10
INC 11

Circuit 2
Symbol

Operation
ADD 11
SUB 10
XOR 00
INC 01

Different state
encodings make
circuits no longer
amenable to
combinational
logic equivalence
checking

Kurt Keutzer 54

Different Encodings

x

y

alu_out

clk2

32

32

clk

x

y

alu_out

clk2

32

32

clk

ALU ``ADD’’s on 00 ALU ``ADD’’s on 11

28

Kurt Keutzer 55

Extras

Kurt Keutzer 56

Building ROBDD: Procedure Apply
Compute f1 <op> f2

<op> can be AND, OR, XOR, XNOR, etc.
To apply the operator to the ROBDDs represented by f1

and f2

1) If v1 and v2 are terminal vertices, simply generate a
terminal vertex u with
value(u) = value(v1) <op> value(v2)

2) Else if index(v1) = index(v2) = i
Call algorithm apply recursively on low(v1) and

low(v2) to generate a new vertex u, low(u),
high(v1) and high(v2) to generate high(u), after
creating vertex u,index(u) = i

29

Kurt Keutzer 57

Procedure Apply - 2

3) If index(v1) = i, but index(v2) > i, then create a
new vertex u having index i, and apply algorithm
recursively on low(v1) and v2 to generate low(u),
and on high(v1) and v2 to generate high(u).

4) If index(v2) = i, but index(v1) > i, then create a
new vertex u having index i, and apply algorithm
recursively on low(v2) and v1 to generate low(u),
and on high(v2) and v1 to generate high(u).

O(G1 ∗ G2) complexity (though recursive).
“Multiplying” the two graphs.

Kurt Keutzer 58

Given ordering and multilevel network.

Proceed through network, constructing the ROBDD for
each gate output, by applying the gate operator to the
ROBDDs of the gate inputs

ROBDD Construction - 1

ROBDD of a b

a b + c
a
b

c

d

a b
0 1 0 1 Begin with ROBDDS

for primary inputs
0 1 0 1

30

Kurt Keutzer 59

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 2a

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

a
0 1

0 1

b
0 1

0 1

v1 v2 If index(v1) = i, but index(v2) > i, then create a
new vertex u having index i, and apply algorithm
recursively on low(v1) and v2 to generate low(u),
and on high(v1) and v2 to generate high(u).

Kurt Keutzer 60

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 2c

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

a
0 1

0 1

b
0 1

0 1

v1 v2 If index(v1) = i, but index(v2) > i, then create a
new vertex u having index i, and apply algorithm
recursively on low(v1) and v2 to generate low(u),
and on high(v1) and v2 to generate high(u).

au

low(u) high(u)

31

Kurt Keutzer 61

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 2d

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

b
0 1

0 1

v1 v2
If index(v1) = i, but index(v2) > i, then create a

new vertex u having index i, and apply algorithm
recursively on low(v1) and v2 to generate low(u),
and on high(v1) and v2 to generate high(u).

au

low(u) high(u)

AND
0

Kurt Keutzer 62

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 3a

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

0
b

0 1

0 1

v1 v2 If index(v2) = i, but index(v1) > i, then create a
new vertex u’ having index i, and apply algorithm
recursively on low(v2) and v1 to generate low(u’),
and on high(v2) and v1 to generate high(u’).

AND

u’ b
0 1

low(u’) high(u’)

32

Kurt Keutzer 63

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 3b

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

0
b

0 1

0 1

v1 v2 If index(v2) = i, but index(v1) > i, then create a
new vertex u’ having index i, and apply algorithm
recursively on low(v2) and v1 to generate low(u’),
and on high(v2) and v1 to generate high(u’).

AND

u’ b
0 1

low(u’) high(u’)

Kurt Keutzer 64

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 3c

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

0 0

v1 v2 If index(v2) = i, but index(v1) > i, then create a
new vertex u’ having index i, and apply algorithm
recursively on low(v2) and v1 to generate low(u’),
and on high(v2) and v1 to generate high(u’).

AND

u’ b
0 1

low(u’) high(u’)

33

Kurt Keutzer 65

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 3d

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

0 0

v1 v2
If v1 and v2 are terminal vertices, simply
generate a terminal vertex u with

value(u) = value(v1) <op> value(v2)
AND

u’ b
0 1

high(u’)

0=

low(u’)

0

Kurt Keutzer 66

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 3e

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

0

v1 v2 If index(v2) = i, but index(v1) > i, then create a
new vertex u’ having index i, and apply algorithm
recursively on low(v2) and v1 to generate low(u’),
and on high(v2) and v1 to generate high(u’).

AND

u’ b
0 1

high(u’)0

b
0 1

0 1

high(v2)

34

Kurt Keutzer 67

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 3f

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

0 1

v1 v2
If v1 and v2 are terminal vertices, simply
generate a terminal vertex u with

value(u) = value(v1) <op> value(v2)
AND

u’ b
0 1

high(u)

0=
high(u’)

0

Kurt Keutzer 68

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 3g

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

0 1

v1 v2
If v1 and v2 are terminal vertices, simply
generate a terminal vertex u with

value(u) = value(v1) <op> value(v2)
AND

u’ b
0 1

0=
high(u’)

0 0

35

Kurt Keutzer 69

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4a

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

a
0 1

0 1

b
0 1

0 1

v1 v2

a

computing low(u)

0

b
0 1

0 0

high(u’)

After returning from recursion:
If index(v1) = i, but index(v2) > i, then create a

new vertex u having index i, and apply algorithm
recursively on low(v1) and v2 to generate low(u),
and on high(v1) and v2 to generate high(u).

u

high(u’)

Kurt Keutzer 70

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4b

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

a
0 1

0 1

b
0 1

0 1

v1 v2

a
0

b
0 1

0 0

high(u’)

If index(v1) = i, but index(v2) > i, then create a
new vertex u having index i, and apply algorithm
recursively on low(v1) and v2 to generate low(u),
and on high(v1) and v2 to generate high(u).

u

high(u’)

36

Kurt Keutzer 71

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4c

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

1 b
0 1

0 1

v1 v2

a
0

b
0 1

0 0

high(u’)

After returning from recursion:
If index(v1) = i, but index(v2) > i, then create a

new vertex u having index i, and apply algorithm
recursively on low(v1) and v2 to generate low(u),
and on high(v1) and v2 to generate high(u).

u

high(u’)

Kurt Keutzer 72

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4d

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

1

v1 v2 If index(v2) = i, but index(v1) > i, then create a
new vertex u’ having index i, and apply algorithm
recursively on low(v2) and v1 to generate low(u’),
and on high(v2) and v1 to generate high(u’).

AND b
0 1

0 1 u’ b
0 1

high(u’)high(u’)

37

Kurt Keutzer 73

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4e

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

1
b

0 1

0 1

v1 v2 If index(v2) = i, but index(v1) > i, then create a
new vertex u’ having index i, and apply algorithm
recursively on low(v2) and v1 to generate low(u’),
and on high(v2) and v1 to generate high(u’).

AND

u’ b
0 1

low(u’) high(u’)

low(v2)

Kurt Keutzer 74

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4f

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

1 0

v1 v2 If index(v2) = i, but index(v1) > i, then create a
new vertex u’ having index i, and apply algorithm
recursively on low(v2) and v1 to generate low(u’),
and on high(v2) and v1 to generate high(u’).

AND

u’ b
0 1

low(u’) high(u’)

38

Kurt Keutzer 75

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4g

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

1 0

v1 v2
If v1 and v2 are terminal vertices, simply
generate a terminal vertex u with
value(u) = value(v1) <op> value(v2)

AND

u’ b
0 1

low(u’) high(u’)

0=

low(u’)

Kurt Keutzer 76

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4h

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

1 0

v1 v2
If v1 and v2 are terminal vertices, simply
generate a terminal vertex u with
value(u) = value(v1) <op> value(v2)

AND

u’ b
0 1

high(u’)0

=

low(u’)

0

39

Kurt Keutzer 77

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4i

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

1
b

0 1

0 1

v1 v2 If index(v2) = i, but index(v1) > i, then create a
new vertex u’ having index i, and apply algorithm
recursively on low(v2) and v1 to generate low(u’),
and on high(v2) and v1 to generate high(u’).

u’

AND

b
0 1

high(u’)0

high(u’)

Kurt Keutzer 78

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4j

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

1 1

v1 v2

u’

AND

b
0 1

high(u’)0

If v1 and v2 are terminal vertices, simply generate a
terminal vertex u with

value(u) = value(v1) <op> value(v2)

40

Kurt Keutzer 79

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4k

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

1 1

v1 v2

AND

If v1 and v2 are terminal vertices, simply generate a
terminal vertex u with

value(u) = value(v1) <op> value(v2)

u’ b
0 1

0 1

Kurt Keutzer 80

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4l

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

a
0 1

0 1

b
0 1

0 1

v1 v2

a
0

b
0 1

0 0

high(u’)

After returning from recursion:
If index(v1) = i, but index(v2) > i, then create a

new vertex u having index i, and apply algorithm
recursively on low(v1) and v2 to generate low(u),
and on high(v1) and v2 to generate high(u).

u

u’ b
0 1

0 1

41

Kurt Keutzer 81

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4m

Is this an ROBDD?

a b + c

a
b

c

d

Proceed to AND gate

a
0 1

0 1

b
0 1

0 1

v1 v2 a
0

b
0 1

0 0

u

u’ b
0 1

0 1

Kurt Keutzer 82

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4n

Reduce

a b + c

a
b

c

d

Proceed to AND gate

a
0 1

0 1

b
0 1

0 1

v1 v2 a
0

0

u

u’ b
0 1

0 1

42

Kurt Keutzer 83

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction - 5

Reduce

a b + c

a
b

c

d

Proceed to AND gate

a
0 1

0 1

b
0 1

0 1

v1 v2

a

b

0
1

0 1

u

1

0

Kurt Keutzer 84

Example OR’ing of ROBDDs

f1 = x1x3 = x1 + x3

1

1

30
0

1
a1

a2

a3 a4

f2 = x2 x32b1

b2

b3 b4

1
30

0
1

2

New created graph

1

33

0 1

1

100

0

1

a1,b1

a2,b1

a2,b2

a4,b4a3,b3a4,b3

a2,b3a3,b1

After reduction
1

2

1

0

0

1

0
f = x1 + x1x2 +

x1x2x3

= x1 + x3 + x2
3

01 0 1

1

110 0 1

1

