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Design Process

Design : specify and 
enter the design intent

Implement:
refine the 
design 
through all 
phases

Verify:
verify the 
correctness of 
design and 
implementation
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Design Verification

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

specification

Is the 
design

consistent
with the original
specification?

Is what I think I want
what I really want?
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Implementation Verification

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

Is the 
implementation

consistent
with the original
design intent?

Is what I 
implemented

what I
wanted?
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Manufacture Verification (Test)

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

Is the 
manufactured

circuit
consistent

with the 
implemented 

design?

Did they
build
what I

wanted?

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk
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Implementation verification for ASIC’s

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

Apply gate-level 
simulation (‘‘the 
golden 
simulator’’) at 
each step to verify 

functionality:
• 0-1 behavior on 
regression test 
set

and timing:
• maximum delay 
of circuit across 
critical paths

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

ASIC
signoff
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Advantages of gate-level simulation
– verifies timing and functionality simultaneously
– approach well understood by designers

Disadvantages of gate-level simulation?

Simulation
driver

(vectors)

Simulation
monitor
(yes/no)

and
speed

Software Simulation

a

b

s

q

0

1

d

clk
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Advantages of gate-level simulation
– verifies timing and functionality simultaneously
– approach well understood by designers

Disadvantages of gate-level simulation?
– computationally intensive - only  1 - 10 clock cycles of 

100K gate design per 1 CPU second
– incomplete - results only as good as your vector set - easy 

to overlook incorrect timing/behavior

Simulation
driver

(vectors)

Simulation
monitor
(yes/no)

and
speed

Software Simulation

a

b

s

q

0

1

d

clk
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Alternative - Static Sign-off

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

ASIC
signoff

Use static 
analysis 
techniques to 
verify: 

functionality:
• formal 
equivalence-
checking 
techniques

and timing:
• use static timing 
analysis –
discussed earlier 
in the semester, 
but don’t forget 
about false paths!

Kurt Keutzer 10

Problem: RTL to RTL Verification

After verification RTL may still be modified
– RTL level improvements for :

• performance
• power
• area
• testability

Need to verify that new RTL is correct

Specification Implementation
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Problem: RTL to Gates Verification

Verify the gate level implementation is 
consistent with the RTL level design

Errors may have occurred due to
– synthesis (heaven forbid!!)
– manual intervention

HDL Design Implementation
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Problem: Gates to Gates Verification

Verify the modified gate level implementation 
is consistent with the RTL level design

Errors may have occurred due to
– Incorrect synthesis or module generation 

(heaven forbid!!)
– Test insertion
– Scan chain reordering
– Clock tree synthesis
– Post layout “tweaks”

Netlist Implementation
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Problem: Layout to Gates Verification (LVS)

Verify the modified gate level implementation 
is consistent with the RTL level design

Errors may have occurred due to
– Errors in physical design tools
– Manual changes in layout

Verification is primarily graphical or 
``topological’’

netlist physical layout
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Solving Layout to Gates Verification (LVS)

Extract gate level models from physical level
Graphically compare extracted model 

against gate-level schematic (layout 
versus schematic)

Flag any discrepancies

netlist physical layout



8

Kurt Keutzer 15

Solving Gates to Gates Verification

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

``specification’’

implementation
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Extract combinational portions

compare
combinational

portions

``spec’’

Flip-flops

Combinational
Logic

inputs outputs

``implementation’’

Flip-flops

Combinational
Logic

inputs outputs
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Combinational Equivalence Checking

Given combination circuits C1 and C2/(Boolean 
functions B1 and B2) how can we practically 
prove that C1 is equivalent to C2?
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Combinational Equivalence Checking

Presumes equivalence-relation given (or discovered) between 
sequential circuits

Approaches
– Reasoning in the propositional calculus/Satisfiability
– Set-theoretic approaches (used in 2-level examples)
– Symbolic simulation (used in 2-level examples)
– Symbolic manipulation

• graph isomorphism
• structural reductions

– Canonical forms - BDD’s and variants
– Test-oriented methods

• static, dynamic learning
These techniques form  the foundation of modern equivalence 

checking/implementation verification
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2-level circuits

Now, treating F and G as sets of cubes we can check if

)()()( FGGFGF →•→⇔⇔

)()( GFGF ∨∧∨⇔

1)()( ⇔∪∩∪ GFGF
Which is feasible for most 2-level circuits/SOP 

expressions/DNF formulas
Worked well in the espresso era – doesn’t generalize to 

multilevel 
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Multilevel: Structural Methods

Combinational circuit 1

unmapped circuit 1 unmapped circuit 2

Combinational circuit 2

Compare them as graphs
Looks tough – why?
Turns out to be easy – why?
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Structural Methods

Combinational circuit 1

unmapped circuit 1 unmapped circuit 2

Combinational circuit 2

Compare them as graphs
Looks tough – graph isomorphism
Turns out to be easy – DAGs
This helps but runs out of gas soon.

Kurt Keutzer 22

More powerful: Testing

Given two single-output circuits A and B
Are A and B equivalent can be posed as:  Is 

there a test for F s-a-0?

If  F s-a-0 is redundant, A ≡ B else test 
vector produces different outputs for A
and B.

x2

B

x4

x1

x3
A

x
s-a-0
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SAT Again

a

b
c

d

e

f

g

h

i

1
hf if

t = 1?

This time ask whether there is an input on which Circuit 1 
and Circuit 2 differ? This time we don’t expect one!

Circuit 1

Circuit 2 –
Any structural 
simularities (found earlier)
are shared
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More powerful: Comparison Mitre

Primary Inputs, Register and Black Box Outputs

spec implementation

COMPARE

0 or 1
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Canonical Forms: Binary Decision Tree

Do not have to store entire set of nodes, but 
have to enumerate them (slight 
improvement over two-level tautology).

a
b
c
d

0 1

d

c

b

a

b

d

0

0

0

0

1

1

potentially exponential # nodes.
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1

1

d

Decision Graph

Share nodes in tree ⇒ graph.

a

c

bb

c

dd

0

0

0

1

0

0
1 1

1 1

FULLY
SHARED

2N nodes

0 1 1 0

1

0

a

b

cc

dd d

0 1

1

1
00

0 0

0 11 0 01

partial
sharing

0 0 0 01 1 11 0 1 0 1

b
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Definition of a Binary Decision Diagram
A Binary Decision Diagram having root vertex v denotes 

a Boolean function fv

1. If v is a terminal vertex:
(a) if value(v) = 1, then fv = 1
(b) if value(v) = 0, then fv = 0

2. If v is a nonterminal vertex with index(v) = n then fv is 
the function:

fv(x1,  … , xn) = !flow(v)(x1,  … , xn-1) + fhigh(v)(x1,  … , xn-1) 

Kurt Keutzer 28

Definition of an Ordered BDD
A Binary Decision Diagram is ordered iff:
1. If v is a non-terminal vertex:
(a) if low(v) is a non-terminal then,

index(v) < index(low(v)) and
(b) if high(v) is a non-terminal then,

index(v) < index(high(v)) and

This property implies the property of freedom in BDDs:
In traversing any path from a vertex in a OBDD to its 
root then we encounter each decision variable at most 
once. 
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Ordered Binary Decision Diagram

Inputs satisfy ordering restriction.  Each node/vertex v in 
the graph has index(v).  Two children are low(v) and 
high(v).  0 and  1 are terminal vertices, others are 
non-terminal.

index(v) < index(low(v)) for all v
index(v) < index(high(v))

f = x1 x2 + x3 f = x1x2x3 + x1x2x3 + x1x2x3

1 1

1

3

1

0
1

0

0 1
0

0 1 0

10

0 1 0

1

1

1010

2 22

3 30
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Storage is always a problem for Ordered Binary Decision 
Diagram (OBDD) can we simplify them further?

Ordered BDDs Enough?

10 0 1 0

1

2 2

33

0

0 1 0

1

1

1010

f = x1x2x3 + x1x2x3
+ x1x2x3
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An Ordered Binary Decision Diagram (OBDD) may still 
have ``redundant’’ vertices.

Definition:  An OBDD is reduced, if it contains no vertex 
v with low(v) = high(v) , nor does it contain distinct 
vertices v and v’ such that the subgraphs rooted by v
and v’ are isomorphic.

Can reduce an OBDD in O( |G| log |G| ) time.

Reduced, Ordered BDDs

1

3
2

1

0

1

1

0

1

0

10 0 1 0

1

2 2

33

0

0 1 0

1

1

1010

0

f = x1x2x3 + x1x2x3
+ x1x2x3

f = x1x3 + x1x2x3
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Some Properties of a ROBDD

a

b
c

d

0 1

0

0

0

0

1
1

1
1

ordering
a b c d

f = ac + abc + acd + abcd
disjoint cover

f

a
c
a
d
b
c
b
d

a
b
c
d

g
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Proof that ROBDDs are canonical - 1
Theorem (R. Bryant): If G, G’ are ROBDD’s of a 

Boolean function f with k inputs then G and G’ are 
identical. 

Base Case: i=0. f has 0 inputs.
f can be the  0 or  1 ROBDD. 
In either case G and G’ are identical. 

Induction Hypothesis:  Suppose that for any Boolean 
function f with i < k inputs then if H, H’ are each 
ROBDD, with the same ordering, of the Boolean 
function f then H, H’ are identical. 

Let G, G’ be ROBDDs for f under the same ordering.

Let xi be the input with lowest index (I.e. the root of 
the ROBDD) in the ROBDDs G, G’

Kurt Keutzer 34

Proof that ROBDDs are canonical -2

f0’ f1’

0 1

G’

xi

f0 f1

0 1

G
xi

By hypothesis, f0 ≡ f0’ f1 ≡ f1’. 
Let us consider a number of cases regarding sharing 

between f0, f1, and f0’, f1’
If there is no sharing of vertices between f0, f1 and f0’, 

f1’, then …
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Proof that ROBDDs are canonical -2

f0’ f1’

0 1

G’

xi

f0 f1

0 1

G
xi

By hypothesis, f0 ≡ f0’ f1 ≡ f1’. 
Let us consider a number of cases regarding sharing 

between f0, f1, and f0’, f1’
If there is no sharing of vertices between f0, f1 and f0’, 

f1’, then G is identical to G’.  

f0, f0’ identical
f1, f1’ idencial
Xi identical
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Proof that ROBDDs are canonical - 3

Suppose  a vertex u is shared across f0, f1.

Then  if there is a corresponding single u’ shared in f0’, 
f1’ then G, and G’ are identical.  

G

u

G’

u’
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Proof that ROBDDs are canonical - 3

Suppose  a vertex u is shared across f0, f1.

Then  if there is a corresponding single u’ shared in f0’, 
f1’ then G, and G’ are identical.  

G

u

G’

u’

By the induction hypothesis the 
bdd rooted in u, u’ are the 
same

Kurt Keutzer 38

Proof that ROBDDs are canonical – 4a

Alternatively, if u in G is realized as two (or more) 
vertices u’,u’’,  in G’, then G, G’ are not identical:

G’

u’’u’

G

u

What about this case?
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Proof that ROBDDs are canonical – 4b
Alternatively, if u in G is realized as two (or more) 

vertices u’,u’’,  in G’, then G, G’ are not identical:

G’

u’’u’

G

u

But the ROBDDs rooted at u’, u’’ both realize the same 
Boolean function with the same ordering.
So G’ is not reduced because there are two such 
vertices in G’. But this contradicts the assumption that 
G, G’ are each ROBDDs.

Therefore, in each case G is identical to G’. Therefore 
ROBDDs are a canonical representation.

Kurt Keutzer 40

ROBDDs are Canonical - use 1
Given an ordering, a logic function has a unique 

ROBDD.
Given two circuits, checking their equivalence reduces 

to a Directed Acyclic Graph isomorphism check 
between their respective ROBDDs

– can be done in linear time in  G1 (=  G2 ).
– constructing ROBDD for a given function and ordering could 

take exponential time.
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ROBDD - approach 2

Given two single-output circuits A and B

x2

B

x4

x1

x3
A

What is the ROBDD of this function? 
If 0 then circuits A and B are equivalent 
Else they are not 
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Given ordering and multilevel network.

Proceed through network, constructing the ROBDD for 
each gate output, by applying the gate operator to the 
ROBDDs of the gate inputs

Example worked through in extra slides for this lecture

ROBDD Construction

ROBDD of a b

a b + c
a
b

c

d

a b
0 1 0 1 Begin with ROBDDS

for primary inputs
0 1 0 1
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Sensitivity to Ordering

Given a function with n inputs, one input 
ordering may require exponential # vertices 
in ROBDD, while other may be linear in size.

f = x1 x2 + x3 x4 + x5 x6

1

2
3

4
5

0 1

6

1
4

2
4

5

2

6

2

5

2

3
5

3

x1 x2 x3 x4 x5 x6 x1 x4 x2 x5 x3 x6

5

0 1
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Summary of ROBDD checking procedure

Given circuits C1 and C2 to be verified for equivalence
A1) create the ``comparison mitre’’ circuit D1
A2) find a variable ordering for the ROBDD for D1
A3) build the ROBDD and check for 0
or 
B1) find a variable ordering for the ROBDD’s of C1, C2
B2) build the ROBDD for each of C1, C2
B3) Check to see that the DAGs are isomorphic
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Heuristic Input Ordering

BDD can be viewed as a multiplexor-based 
multilevel circuit.

Look at an (optimized) multilevel network and 
decide ordering for the BDD.

Generalize to multiple levels.
Resolve “conflicts” heuristically.

...

IL

i0 i1 im     

im+1 im+2

out

order  im+1, im+2
after  i0, i1, …, im
since IL appear to be
a good “encoding”
for  i0, i1, …, im
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Putting it all together

Current formula requires:
• Ability to associate FF’s from the two circuits
• Exploiting structural similarity/check-points
• Applying whatever works:

– Test techniques, SAT for more regular structures
– BDD for more random
– Mix and match 
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Solving RTL-to-Gates Verification

RTL
Synthesis

HDL
``specification’’

netlist

Step 1: 
(formally) 
translate 

HDL 
source 

into 
netlist

Combinational
logic

clkclk

Combinational
logic

clkclk

Step 2: 
Perform 

gates-to-gates 
verification

gate-level
implementation
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Solving RTL-to-RTL Verification

RTL
Synthesis

HDL
``specification’’

netlist

Step 1: 
(formally) 
translate
both HDL 
sources 

into 
netlists

Combinational
logic

clkclk

RTL
Synthesis

HDL
implementation

netlist

Combinational
logic

clkclk

Step 2: 
perform 
gate-to-

gate 
verification 
on netlists
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Current status of equivalence checking
Equivalence checking is one of the great successes of EDA in the

late 90’s
Equivalence checkers are now able to routinely verify complex 

(>10M gate) integrated circuit designs
Coupled with static timing analysis it has enabled “static-signoff”
Current technology leaders are Encounter Conformal from 

Cadence (Verplex) and Formality from Synopsys. Good 
proprietary (e.g. IBM/verity) solutions exist

Static sign-off methodology more widely used
Successful equivalence checkers must orchestrate a number of 

different approaches
– syntactic equivalence 
– automatic test pattern generation-like approaches
– BDD-based techniques
– pattern-reduction methods

A few open problems remain
• retimed circuits

Kurt Keutzer 50

Open problems in implementation verification

More robust equivalence checking
Verification of equivalence between sequential 

circuits in which there is no obvious register-
equivalence

– retimed circuits
– circuits with differing state assignments

Better diagnostics when circuits are not 
equivalent

Implementation verification between RTL and 
behavioral models
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Retimed circuits

a
b

s

q
0
1

d

clk

a

b

s

q
0
1

d

clk

Circuits are equivalent (modulo some initial state issues)
but it is not possible to show that they are equivalent using 
Boolean equivalence
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Encoding Problems

Some logic specifications are 
“symbolic” rather than binary-valued

e.g.  specification for an ALU
Symbol Operation
ADD +
SUB -
XOR      Exclusive-OR
INC Increment

Can assign any binary code to the 
symbolic values, so long as they are 
different
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Different State Encodings
Circuit 1
Symbol Operation
ADD 00
SUB 01
XOR 10
INC 11

Circuit 2
Symbol

Operation
ADD 11
SUB 10
XOR 00
INC 01

Different state 
encodings make 
circuits no longer 
amenable to 
combinational 
logic equivalence 
checking

Kurt Keutzer 54

Different Encodings

x

y

alu_out

clk2

32

32

clk

x

y

alu_out

clk2

32

32

clk

ALU ``ADD’’s on 00 ALU ``ADD’’s on 11
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Extras

Kurt Keutzer 56

Building ROBDD: Procedure Apply
Compute f1 <op> f2

<op> can be AND, OR, XOR, XNOR, etc.
To apply the operator to the ROBDDs represented by f1

and f2

1) If v1 and v2 are terminal vertices, simply generate a 
terminal vertex u with 
value(u) = value(v1) <op> value(v2)

2) Else if index(v1) = index(v2) = i
Call algorithm apply recursively on low(v1) and 

low(v2) to generate a new vertex u, low(u), 
high(v1) and high(v2) to generate high(u), after 
creating vertex u,index(u) = i
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Procedure Apply - 2

3) If index(v1) = i, but index(v2) > i, then create a
new vertex  u having index i, and apply algorithm
recursively on low(v1) and v2 to generate low(u),
and on high(v1) and v2 to generate high(u).

4) If index(v2) = i, but index(v1) > i, then create a
new vertex  u having index i, and apply algorithm
recursively on low(v2) and v1 to generate low(u),
and on high(v2) and v1 to generate high(u).

O(  G1 ∗ G2  ) complexity (though recursive). 
“Multiplying” the two graphs.
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Given ordering and multilevel network.

Proceed through network, constructing the ROBDD for 
each gate output, by applying the gate operator to the 
ROBDDs of the gate inputs

ROBDD Construction - 1

ROBDD of a b

a b + c
a
b

c

d

a b
0 1 0 1 Begin with ROBDDS

for primary inputs
0 1 0 1
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Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 2a

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

a
0 1

0 1

b
0 1

0 1

v1 v2 If index(v1) = i, but index(v2) > i, then create a
new vertex  u having index i, and apply algorithm
recursively on low(v1) and v2 to generate low(u),
and on high(v1) and v2 to generate high(u).

Kurt Keutzer 60

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 2c

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

a
0 1

0 1

b
0 1

0 1

v1 v2 If index(v1) = i, but index(v2) > i, then create a
new vertex  u having index i, and apply algorithm
recursively on low(v1) and v2 to generate low(u),
and on high(v1) and v2 to generate high(u).

au

low(u) high(u)
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Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 2d

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

b
0 1

0 1

v1 v2
If index(v1) = i, but index(v2) > i, then create a

new vertex  u having index i, and apply algorithm
recursively on low(v1) and v2 to generate low(u),
and on high(v1) and v2 to generate high(u).

au

low(u) high(u)

AND
0
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Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 3a

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

0
b

0 1

0 1

v1 v2 If index(v2) = i, but index(v1) > i, then create a
new vertex  u’ having index i, and apply algorithm
recursively on low(v2) and v1 to generate low(u’),
and on high(v2) and v1 to generate high(u’).

AND

u’ b
0 1

low(u’) high(u’)
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Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 3b

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

0
b

0 1

0 1

v1 v2 If index(v2) = i, but index(v1) > i, then create a
new vertex  u’ having index i, and apply algorithm
recursively on low(v2) and v1 to generate low(u’),
and on high(v2) and v1 to generate high(u’).

AND

u’ b
0 1

low(u’) high(u’)
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Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 3c

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

0 0

v1 v2 If index(v2) = i, but index(v1) > i, then create a
new vertex  u’ having index i, and apply algorithm
recursively on low(v2) and v1 to generate low(u’),
and on high(v2) and v1 to generate high(u’).

AND

u’ b
0 1

low(u’) high(u’)
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Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 3d

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

0 0

v1 v2
If v1 and v2 are terminal vertices, simply 
generate a terminal vertex u with 

value(u) = value(v1) <op> value(v2)
AND

u’ b
0 1

high(u’)

0=

low(u’)

0
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Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 3e

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

0

v1 v2 If index(v2) = i, but index(v1) > i, then create a
new vertex  u’ having index i, and apply algorithm
recursively on low(v2) and v1 to generate low(u’),
and on high(v2) and v1 to generate high(u’).

AND

u’ b
0 1

high(u’)0

b
0 1

0 1

high(v2)
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Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 3f

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

0 1

v1 v2
If v1 and v2 are terminal vertices, simply 
generate a terminal vertex u with 

value(u) = value(v1) <op> value(v2)
AND

u’ b
0 1

high(u)

0=
high(u’)

0
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Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 3g

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

0 1

v1 v2
If v1 and v2 are terminal vertices, simply 
generate a terminal vertex u with 

value(u) = value(v1) <op> value(v2)
AND

u’ b
0 1

0=
high(u’)

0 0
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Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4a

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

a
0 1

0 1

b
0 1

0 1

v1 v2

a

computing low(u)

0

b
0 1

0 0

high(u’)

After returning from recursion:
If index(v1) = i, but index(v2) > i, then create a

new vertex  u having index i, and apply algorithm
recursively on low(v1) and v2 to generate low(u),
and on high(v1) and v2 to generate high(u).

u

high(u’)

Kurt Keutzer 70

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4b

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

a
0 1

0 1

b
0 1

0 1

v1 v2

a
0

b
0 1

0 0

high(u’)

If index(v1) = i, but index(v2) > i, then create a
new vertex  u having index i, and apply algorithm
recursively on low(v1) and v2 to generate low(u),
and on high(v1) and v2 to generate high(u).

u

high(u’)
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Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4c

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

1 b
0 1

0 1

v1 v2

a
0

b
0 1

0 0

high(u’)

After returning from recursion:
If index(v1) = i, but index(v2) > i, then create a

new vertex  u having index i, and apply algorithm
recursively on low(v1) and v2 to generate low(u),
and on high(v1) and v2 to generate high(u).

u

high(u’)
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Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4d

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

1

v1 v2 If index(v2) = i, but index(v1) > i, then create a
new vertex  u’ having index i, and apply algorithm
recursively on low(v2) and v1 to generate low(u’),
and on high(v2) and v1  to generate high(u’).

AND b
0 1

0 1 u’ b
0 1

high(u’)high(u’)
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Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4e

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

1
b

0 1

0 1

v1 v2 If index(v2) = i, but index(v1) > i, then create a
new vertex  u’ having index i, and apply algorithm
recursively on low(v2) and v1 to generate low(u’),
and on high(v2) and v1 to generate high(u’).

AND

u’ b
0 1

low(u’) high(u’)

low(v2)
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Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4f

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

1 0

v1 v2 If index(v2) = i, but index(v1) > i, then create a
new vertex  u’ having index i, and apply algorithm
recursively on low(v2) and v1 to generate low(u’),
and on high(v2) and v1 to generate high(u’).

AND

u’ b
0 1

low(u’) high(u’)
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Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4g

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

1 0

v1 v2
If v1 and v2 are terminal vertices, simply 
generate a terminal vertex u with 
value(u) = value(v1) <op> value(v2)

AND

u’ b
0 1

low(u’) high(u’)

0=

low(u’)
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Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4h

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

1 0

v1 v2
If v1 and v2 are terminal vertices, simply 
generate a terminal vertex u with 
value(u) = value(v1) <op> value(v2)

AND

u’ b
0 1

high(u’)0

=

low(u’)

0
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Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4i

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

1
b

0 1

0 1

v1 v2 If index(v2) = i, but index(v1) > i, then create a
new vertex  u’ having index i, and apply algorithm
recursively on low(v2) and v1 to generate low(u’),
and on high(v2) and v1 to generate high(u’).

u’

AND

b
0 1

high(u’)0

high(u’)
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Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4j

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

1 1

v1 v2

u’

AND

b
0 1

high(u’)0

If v1 and v2 are terminal vertices, simply generate a 
terminal vertex u with 

value(u) = value(v1) <op> value(v2)
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Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4k

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

1 1

v1 v2

AND

If v1 and v2 are terminal vertices, simply generate a 
terminal vertex u with 

value(u) = value(v1) <op> value(v2)

u’ b
0 1

0 1
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Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4l

Build ROBDD of a * b using apply

a b + c

a
b

c

d

Proceed to AND gate

a
0 1

0 1

b
0 1

0 1

v1 v2

a
0

b
0 1

0 0

high(u’)

After returning from recursion:
If index(v1) = i, but index(v2) > i, then create a

new vertex  u having index i, and apply algorithm
recursively on low(v1) and v2 to generate low(u),
and on high(v1) and v2 to generate high(u).

u

u’ b
0 1

0 1
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Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4m

Is this an ROBDD?

a b + c

a
b

c

d

Proceed to AND gate

a
0 1

0 1

b
0 1

0 1

v1 v2 a
0

b
0 1

0 0

u

u’ b
0 1

0 1

Kurt Keutzer 82

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction – 4n

Reduce

a b + c

a
b

c

d

Proceed to AND gate

a
0 1

0 1

b
0 1

0 1

v1 v2 a
0

0

u

u’ b
0 1

0 1
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Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

ROBDD Construction - 5

Reduce

a b + c

a
b

c

d

Proceed to AND gate

a
0 1

0 1

b
0 1

0 1

v1 v2

a

b

0
1

0 1

u

1

0
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Example OR’ing of ROBDDs

f1 = x1x3 =  x1 + x3

1

1

30
0

1
a1

a2

a3 a4

f2 = x2 x32b1

b2

b3 b4

1
30

0
1

2

New created graph

1

33

0 1

1

100

0

1

a1,b1

a2,b1

a2,b2

a4,b4a3,b3a4,b3

a2,b3a3,b1

After reduction
1

2

1

0

0

1

0
f = x1 + x1x2 + 

x1x2x3

= x1 + x3 + x2
3

01 0 1

1

110 0 1

1


