Reducing Multi-V alued Alg ebraic Operation s to Binary

ABSTRACT

Algebraic operations have been developed for binary logic
synthesis and later were extended to apply to multi-valued
(MV) logic. The operations in the MV domain were pre-
viously considered more complex and slower. This paper
shows that MV algebraic operations are essentially as easy
as binary ones, with only slight overhead (linear in expres-
sions) in transformation and inverse transformation.

By introducing cosingleton sets as a new basis, any MV
sum-of-product expression can be rewritten and parsed to a
binary logic synthesizer for fast execution; optimized results
can be directly interpreted in the MV domain. This process,
called EBD, reduces MV algebraic operations to binary.

A pure MV operation differs its corresponding EBD one
mainly in that the former possesses “semi-algebraic” gener-
ality, which has not been implemented for binary logic. Ex-
periments show that the proposed methods are significantly
faster with little or no loss in quality when run in compara-
ble scripts of sequences of logic synthesis operations.

1. INTRODUCTION

In high-level hardware design, system descriptions are in-
herently multi-valued. This nature inspires researchers in
logic synthesis to pursue optimality from the binary domain
to the MV domain. The MVSIS project [2] is an exam-
ple. Traditionally, logic synthesizers are designed for binary
optimization. That is, to minimize MV expressions, they
should be first encoded into binary before logic synthesiz-
ers can come into play. The disadvantages are two-folded:
first, the optimization is restricted to a particular encoding;
second, compact structures might be destroyed by the en-
coding and become more obscure to extract. Moreover, MV
optimization problems were considered to be more sophis-
ticated than binary ones; it was not so obvious whether it
is affordable to work on the MV domain. In this paper we
conquer all of these serious obstacles at once. To achieve
this, without resorting to binary encoding, we rewrite MV
expressions in terms of cosingleton sets while the structures

Permissionto make digital or hard copiesof all or part of this work for

personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributed for profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationon thefirst page.To copy otherwiseto

republishto poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

DATE '03 MesseMunich, Germary

Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ..$5.00.

of these expressions are preserved. Thereby, the new repre-
sentations, which are binary in disquise, can be parsed to a
binary logic synthesizer. Also, the results directly reflect op-
timized structures in the MV domain. This approach, called
EBD (Execution in Binary-in-Disguise), can be significantly
faster than previous MV algebraic operations [1, 5, 6].

In [1, 5, 6], semi-algebraic operations for multi-valued in-
put, binary output functions have been implemented in MV-
SIS for synthesizing multi-valued multi-level networks. The
methods are fairly complex and tend to be slow on large
examples, but were a significant improvement over previ-
ously known methods [8]. On the other hand, their algebraic
binary counterparts are very fast. Another MV algebraic
method [10] applies to the multi-valued output case. It does
the factoring with the MIN and MAX operators instead of
OR and AND, and thus is not directly comparable with our
formulation.

Semi-algebraic in the binary domain refers to using the
Boolean (non-algebraic) identity zz = z.! Thus it allows
the following factorization:

abd + aef + bedf + cef = (cf + a)(bd + ef).

Although semi-algebraic methods have been proposed for
the binary domain, they have not been implemented. Thus
all algebraic operations in the binary domain in this paper
are restricted to algebraic and not semi-algebraic. We will
use the term algebraic in the MV domain to mean the more
general, semi-algebraic?, and in the binary domain, to mean
purely algebraic and not semi-algebraic.

We show how all MV semi-algebraic operations can be
mapped into operations on purely binary-input functions us-
ing cosingletons to rewrite each multi-valued literal. Then
the binary algebraic operations of extraction, factoring, de-
composition, and algebraic division can be applied. After
the result is obtained, the answer is translated back into
the original MV domain. This set of binary operations are
referred to as the EBD operations.

'In logic synthesis it is common to refer to algebraic as those
algorithms which manipulate expressions like polynomials.
Certainly zz = z is algebraic in the Boolean algebraic sense,
but we refer to such rules as Boolean instead.

’In the MV-domain, the purely algebraic operations have
not been defined because it seems that the absorption rule
has to be used in this domain. Thus, the generalization
to semi-algebraic was made in the MV-domain. While such
could be done in the binary domain, use of absorption would
significantly slow down the algebraic operations. As it is,
the algebraic operations in the binary domain are extremely
fast.

We also show, modulo that the EBD operations do not
have semi-algebraic equivalents, that the EBD methods have
no obvious loss of quality, in that there are results that can
be obtained using the multi-valued method, which cannot
be obtained by the EBD method and vice versa. Thus, the
dual methods are incomparable, but we show that when re-
stricted to purely algebraic methods, they only differ in their
use of the flexibility available during the algebraic division
process in the MV domain, each representing opposite ex-
tremes.

The rest of this paper is organized as follows. In Section 2,
we define our representations for MV logic. Section 3 in-
troduces the cosingleton transform with an EBD factoriza-
tion example. For each algebraic operation, the pure MV
method and its corresponding EBD method are compared
in Section 4. We then extend the discussion further to non-
algebraic operations in Section 5. Experimental results and
conclusions are given in Sections 6 and 7 respectively.

2. PRELIMIN ARIES

As a generalization of Boolean functions, we define

DEFINITION 1. A multi-valued function F(a,b,...) is a
function F : AXBX--++— T, wherea, b, ... are multi-valued
variables taking on wvalues from sets A, B, ... respectively,
and T is the codomain of F.

In particular, we consider finite sets with size > 2. (This
paper uses nature numbers to represent elements of a set.
An n-element set has elements 0,1,...,n—1.) Like Boolean
functions, MV functions can also be expressed in sum-of-
product (SOP) forms. For example,

FOV = (@%b)+ @%bty

where) C S,,S.,...C A, 0 CS,S;,...C B, ..., and
TeT.
Also, from set theory, we define

DEFINITION 2. Given a set U with a singleton S C U,
the cosingleton of S is the complement set of S with respect
to U.

It is immediate that

PROPOSITION 1. Given a set U, for any subset of U there
is a unique representation in the form of a conjunction of
cosingletons C U.

3. THE COSINGLET ON TRANSFORM

Consider the following problem. Given an arbitrary multi-
valued SOP expression £ and an oracle 2 which optimally
factors a binary SOP input, can we take advantage of {2 to
factor £7 If yes, how?

To achieve this attempt, we have two criteria:

1. & must “look like” binary, and

2. &" must “directly” reflect an optimal factored form of
g,

where £’, modified from &, is the input of Q, and £" is the
resultant output of 2.

Obviously any binary encoding, which associates a value
of an MV variable with a code of a vector of binary vari-
ables, satisfies the first criterion. However, none satisfies

Figure 1: The Hasse diagram of the power set of
X ={0,1,2}: For an MV variable z taking on values
from X, all of its literals can be expressed by prod-
ucts of cosingletons. The product-of-cosingleton ex-
pressions are listed under the corresponding literals.

the second for all possible £. For example, 1-hot codes [3],
negative 1-hot codes [4] and all logarithmic codes fails. His-
torically, there were many instances encoding multi-valued
applications into binary. For example, the initial version
of Espresso [3] was binary, but it used the idea of treat-
ing the multiple outputs of a PLA as a single multi-valued
input. These were coded with a 1-hot representation and
don’t cares were added which stated that two values, on at
the same time, was a don’t care (plus the all Os code). Also,
in most MDD implementations [7], multi-valued variables
are encoded with some logarithmic code and a regular BDD
package is used. These are just to name a few.

To proceed, consider the following example. Given an MV
expression with two 4-valued variables a and b,

a1 | 0312} | (12)5(0.3) 4 (0.1}4(28)

it can be factored as
= (al0231p{01.2) | g{01.21p(023}y
(@123} 1018} 4 {013} (12,3}

We can observe that, unlike binary SOP representations,
multi-valued ones still have disjunctive operations (due to
MV literals) in each product term. To eliminate such dis-
junctive operations, we need to re-express each MV literal
in a pure product form. Also we require a bijection between
the new expressions and the original MV literals. More im-
portantly, after factorization, we should be able to recover
MYV literals.

So here is a solution, called the cosingleton transform. Let
z be a variable taking on values from X = {0,...,n—1}. In
the rest of this paper, we use z; to denote g% ¢~ 1i+1n}
(i-e. the literal with cosingleton set {0, ...,7—1,4+1,...,n}),
and use Z; to denote z{*} (i.e. the literal with singleton set
{i}). From Proposition 1, we know that any literal of z
can be uniquely expressed as a product of some cosingleton
literals. Figure 1 illustrates the case for n = 3. With this
convention, the previous example can be rewritten as

aoa1babs + a1a2bobs + agasbibs + azasbobs.

With no excuse for rejecting wrong formats, factors this

expression in the binary domain and yields
= (a1b3 + asbi)(aob2 + a2bo).

One can check that in this case the EBD factorization gives
the same result as the MV factorization. In general, the two
factorizations may lead to different but related results as
discussed in Section 4. Notice that, even for non-algebraic
factorization, we can still transform back to the MV domain
since all set operations are legal. More discussions can be
found in Section 5.

As one might expect from the previous example, the pro-
cedure of the cosingleton transform is as follows. Given an
MYV SOP expression, for each literal «° we replace it with
IL ¢s Ti- To perform inverse transform, I1,cr i are replaced
with {7177}

€T

So far we have answered the questions raised in the be-
ginning of this section. One might be still curious whether
the cosingleton transform is the most compact way.

PROPOSITION 2. To rewrite all possible n-valued literals
as a product form, at least n binary variables should be in-
troduced.

As the cosingleton transform introduces n “binary variables”
in this case, it is optimal. However, for a particular expres-
sion, it is possible that one can rewrite an n-valued literal
with fewer binary variables than n.

Although the cosingleton transform looks like binary en-
coding, one should notice their fundamental difference. That
is, z; (or T;) is not a binary variable, rather a symbol de-
noting some cosingleton (or singleton). There is no sense
to valuate x; and T;. Accordingly, we cannot treat a trans-
formed representation as a binary implementation for an
MYV expression.

4. ALGEBRAIC OPERATIONS

4.1 Factorization and Decomposition

One difference between the current MV algebraic opera-
tions and the binary ones is the set of divisors used. In the
MYV algebraic case, only divisors which have no “common
cube” are considered. An expression has a common cube if
there is a literal of some cube that contains all other literals
of that variable appearing in the other cubes of the expres-
sion. In that case, the dominating literal can be factored out
to obtain a factored expression with no increase in literals.
An example which has a common cube is

Q0182 | (18} (1) _ (018} (52} | o181}y

In contrast, the notion of being “cube-free” is that for each
variable, the supercube (literal) of all literals of that variable
appearing in that expression is computed. If the supercube
is 1 (the universe literal containing all values for that vari-
able) for all variables appearing in the expression, then the
expression is cube-free. Making an expression cube-free by
factoring out the supercube literals of an expression is likely
to increase the number of literals in the factored form of the
expression. For example,

Q{02 | {18} {1} _
a{0,1,3}b{l,Q}(a{O,l,Z}b{0,2,3} +a{1,2,3}b{0,1,3})

where the expression in the parenthesis has been made cube-
free. Thus in the MV domain the notion of common-cube

free replaced the notion of cube-free (used in the binary
domain) for algebraic operations®. However, making an ex-
pression cube-free moves it “nearer” to being prime (which
may be good in some sense) since the maximum number of
values for each variable is inserted into the expression.

The expression

Q{012 | (13101}

has no common cube in the MV domain and so would be a
candidate divisor. However, mapping these two cubes into
binary using the cosingleton transform, we get

az2a3bob1b3 + apazbobabs = a2b0bs (a3bl + aOb2)
_ a{01113}b{1,2}(a{0,1,2}b{0,2,3} + a{1’2’3}b{0’1’3})

Thus the corresponding cube-free divisor (in the binary do-
main, the cube-free notion is used) is

asby + aoby = al®12p{02:3} 4 4{1,2,315{0,1,3}
On the other hand, in a slightly different example, in the
MV domain,

1O p{2 | {01831} _ (1018} ({0112} 4 i1}y

so the associated common-cube free divisor is

PACRISSCI SN ACY 3
In the binary case,

a2a3bob1bs + azbobabs = asbobs(asbr + b2)
_ glo1s}pi2) (a{o,l,z}b{o,z,a} n b{o,l,s})

so the associated MV cube-free divisor is
azby + by = g t91:2}1{0,2,3} + pl0-13}

The difference between these two results is that for the cube-
free notion associated with the binary case, the divisor has
been “lifted” to have the most values possible. Thus since
a!®%3} has been factored out, the value 2 for a can be in-
serted everywhere in the cube-free factor. Similarly, the
values 0 and 3 can be inserted everywhere for b. By doing
this lifting, we can transform the common-cube free divisor
into the cube-free divisor:

2O {2} | {1}, {01,2}5{0,2,3} 4 p{0,1,3} 4

In the MV algebraic case, the divisor values are “lowered” as
much as possible. Thus the two methods are incomparable.
In general it is not clear which divisor is preferable. In
fact, there are other divisors between these two extremes
(obtained by inserting some of the values allowed); one of
these may be preferred, since it may coincide with a divisor
of another expression. Thus the most general method would
be to find all divisors when looking for common divisors.
Unfortunately, doing this appears to be too expensive.

Consider the following example, where the first factoriza-
tion is done in the MV domain:

a1} | 8y | o 0hpt12} | {013y}
(@l®21p (12} 4 g{01} {23}y (123518 | {01} (1.2}

3In the binary domain, cube-free and common-cube free are
equivalent definitions.

4To understand that this is cube free, note that literals with

; 1,2
all values are suppressed by convention, e.g. a{®%3} =1
is suppressed in this expression.

which translated to the binary domain (and factored fur-
ther) is

= (a1bs + a2b1)(aob2 + a2bs)asbo

Note that this is a semi-algebraic factorization. EBD fac-
torization yields:

apaiasbobabs + apazaszbobibe + arazasbobs + a2a3zbobibs

= (azbs(a1 + b1) + aobz2(a1bs + a2b1))asbo
(al0135{01,2} (4{0.23) | 1023}y | ,{1,2:3}(0,1,3}

(a{0’2’3}b{0’1’2} + a{o’l’3}b{0’2’3}))a{0’1’Z}b{1’2’3}

Thus the EBD factorization is different for two reasons.
First, no semi-algebraic factorization is done in the EBD
method. Second, the EBD result has been lifted to include
as many values as possible. The values in the EBD result
can be lowered to make it more comparable, by multiplying
out the cubes on the outside of the parenthesized expressions
(which has the effect of removing values).

It is possible using simple rules to modify one result to be
closer to the other. For example, the following rule can be
used to convert a binary factorization into one that is more
similar to the MV factorization result.

1. In the factorization tree, at a node that is factored as
a product of expressions, if a binary literal, z;, has
been factored out and one of the expressions has asso-
ciated literals z; everywhere, then multiply z; into all
expressions everywhere but leave terms in any expres-
sion with no z; untouched. Remove z; as a factor.

2. Otherwise leave x; as a factor, but in any expression
where an z; occurs, replace it with z;z;.

Thus the following expression is transformed,

(a1b1 + b2)(aobo + a2)asbs —
(a1a3b1b3 =+ b2b3)(a0a3b0b3 + a2a3)
_ (a{02p02) | oy (o002} 4 01}y

Note that a3 is not put with b in the first parenthesis since
no other a; occurs there with b2. Also, note that when as
and bs are put back, this results in a semi-algebraic factor-
ization (we use asasz = as). This is the same result obtained
by the MV factorization:

= (a1021(02) | {01}y (g {123 (12) | (01},
As another example,

(a1b1 4 b2)azbs —> (a1asb1bs + babs)as.
using Rule 2 for ag.

4.2 Algebraic Division

In algebraic division, a divisor, d, and an expression, f are
given and we want to obtain a quotient, ¢, and remainder,
r, so that f = dq + r. Further, r should have as few cubes
as possible. In the MV case, this is called exact algebraic
division®. Two algorithms were also defined, matching and
satisfiability matriz; the first was defined for the case where
the divisor had only two cubes and was much faster.

% Another type of division, inexact, was also defined for the
MYV case, where given d we seek a better result of the form

f =dg+ 7 where d C d.

The results obtained by EBD algebraic division and the
MYV exact division method are comparable but not necessar-
ily identical for the same reasons as for factorization. In both
cases the divisor is given. So in the expression f = dg + r,
f and d are identical in both cases. Thus,

f=dgpn+ri=dg+

where 1 refers to the EBD result and 2 refers to the MV
result. For the reasons discussed for factorization, the two
quotients, g1 and g2, and two remainders 71 and 72, may
differ. 71 and r2 may be different because the semi-algebraic
division may be able to absorb more cubes in the product,
and the quotients can differ also because one is maximally
raised and the other maximally lowered.

4.3 Common Divisor Extraction

The following is an example of two functions, where a
common factor is found in the EBD domain and not in the
MV domain. The factorization in the MV domain®, implies
there is no common factor.

F o alIp(28) o o238 | O3y 01235013

_ (a{l,S}b{2,3} + b{l,s})(a{2,3} + a{1,2}b{1,2})
— {03}p{13}Y | {023} p(28) | {01}p{1} | ,{0.1.2}p(2)
(@(O13YpT13) 4 {23}y, {0.28) | {0.1,2)5(1.2}

g
However transformed into the binary domain we get
f = aoaiazbobi + aoai1bobz + aoazasbobibs + aoazbobzbs
= (asbs + a1)(a2b1 + b2)acbo
g = a1a2bobz + a1bob1 + azazbobabz + asbobibs
= (asbs + a1)(a2b2 + b1)bo
which has the common factor
asbs + a1 = o012 pl0:12} 4 ,{0,2,3}
The expressions,
F o al bt 4 g p08) 4 (03512} 4 (01302}
(@12 4 O3}y (g (121513} 4 (0.1} (1,2}
0215112} | {01523}y (41} | 4(1})

g=(a

have a common factor in the MV domain but none using
the EBD method. As mentioned, there are examples where
both expressions have no common algebraic factors when
factored in either the MV domain or the EBD domain, but
by selectively adding and deleting values a common factor
can be obtained.

Another difference happens when a divisor is extracted
and algebraically divided into other expressions. The results
can be different between the EBD extraction and the MV
extraction e.g. the extraction may result in new nodes y = k
and f = yq + r where the EBD ¢ and the MV ¢ may differ.

6 Actually, our first implementation of factorization in MV-
SIS did not factor f and g fully, since it gave:

f — (a{l,S}b{2,3} + a{1,2,3}b{1,3})(a{2,3}b{1,2,3} + a{l,Z}b{l,Z})

g = (@013} 4 231 (10231123} | ((0121,(1.2))
and hence did not make the factors common-cube free. Fur-
ther, the common-cubes, a3} and b{%%3} can be elim-
inated as factors of f and b1} can be eliminated as a
factor of g, saving a total of 3 literals in the factored forms.

5. COMPLEMENT ATION, MI NIMIZA TION,
AND NON-ALGEBRAIC OPERATIONS

The interpretation of a; is al?. If we take a binary expres-
sion which has come from reduction from a MV expression,
the new “binary variables” (cosingletons) occur in only pos-
itive form, i.e. the binary expression is positive unate in
these variables. Now consider the following expression

a1by + agby = a1®231p{0:23} | ;10,1,3},{0,1,3}
Using that Z;T; = 0, the complement of the left-hand side
is

which translates into

a2 4 (2301}

The complement of the right-hand side is
(@' 4 o1y (@ 4 p2}) = {13p2} 4 200

Thus we see that we get equal results, in this case, but in
general this is not always the case.

EBD manipulations, like simplification, yield equivalent
results to the MV versions, but EBD results may not be
prime and irredundant. For example,

JRECE SR €3 S S I

is irredundant in the binary domain, but is redundant when
translated to the MV domain. Also, being prime does not
translate between domains, because in the binary domain,
the relations z;Z; = () are unknown, since z; and z; are
treated as independent variables in the binary domain. Thus
in expanding a cube until it just meets the offset in order
to generate a prime, we might not expand far enough in
the binary domain because there are additional (unknown)
cases where intersections are empty.

If the relation, T; = zoz1...Ti—1ZTit1...ZTn—1 is used,
then every expression is positive unate in the new binary
variables. But again, the relation zoz1...Z,—1 = 0 is un-
known. Of course, this information could be provided by

giving

> (@)
as don’t cares, but then the minimization process becomes
more cumbersome’

In general, single cube containment is equivalent between
both domains, i.e. C* C C7 if and only if B(C*) C B(CY),
where B(.) converts an MV cube to a cosingleton-transformed
one.

Although not minimal, the EBD Boolean operations may
be useful since the EBD result could be improved by a single
step of making cubes prime. The result is already minimal
with respect to single cube containment. Optionally further
redundancy can be removed as well. The EBD operation
may be faster since in the binary domain the nocomp option,
which uses the concept of the reduced offset [9], is available.
Thus EBD Boolean operations give a type of sub-optimal
MYV operations.

"This might be useful and practical, but some experimenta-
tion needs to be done here.

6. EXPERIMENT AL RESULTS

These ideas have been implemented in MVSIS and the
MYV algebraic methods compared with the EBD algebraic
methods in the setting of optimizing multi-valued multi-level
networks. For the benchmarks tested, an identical sequence
of operations® was applied, except in the EBD version, called
EBD _script, all MV algebraic operations of MV _script were
replaced with their EBD counterparts. Each EBD algebraic
operation consists of

1. converting the MV expression(s) to their transformed
“binary” counterpart,

2. applying the binary algebraic operation, and

3. converting the result back to an MV expression.

The results are shown in Table 1 where EBD refers to run-
ning EBD _script and MV refers to running MV _script. Time
is in seconds and 1its-ff refers to the total number of liter-
als in the factored forms of the MV expressions in a circuit.
The last set of examples are multi-valued.

As expected, the results show that quality is essentially
maintained by the EBD operations, but the speed is greatly
increased for the larger examples. In some benchmarks, only
a slight loss of quality occurs in using the EBD operations.
This is possibly due to the lack of semi-algebraic operations
in the binary implementation. Also, EBD_fx extracts com-
mon cubes and some of these are of the type [], z; which in
the MV-domain is just a literal and of no value as a separate
node in the network.

7. CONCLUSIONS

The idea of the cosingleton transform puts most MV op-
erations (which include EBD ones) now on an equal footing
with the binary ones in terms of speed and quality of re-
sults, and so is a large step in achieving our goal, to make
MVSIS the system of choice for optimizing multi-level net-
works, whether the network is MV or binary. In addition,
MVSIS includes a number of newer ideas that are not in
SIS, so that the quality of the results already exceeds those
obtained in SIS. We have also observed that the ability to
enter and leave the MV domain during an optimization run,
allows more freedom in finding better optimizations and en-
courages new ideas.

We have not experimented with the MV Boolean oper-
ations, mentioned in Section 5, since the binary ones lead
to sub-optimal results. In addition, the MV Boolean op-
erations are almost as fast. The exception is that there
is no code for the MV counterpart of the reduced offset in
Espresso-MV even though the theory exists [9]. The reduced
offset helps in those cases where the complement of a large
function is needed in order to expand to primes during a
two-level SOP optimization. During node minimization, it
is common to derive a large don’t care set, and a subsequent
call to Espresso-MV requires complementation of the onset
plus don’t care set. However, we intend to experiment with
using EBD node-minimization as a technique for trading
lower quality for increased speed.

8The basic script used was an improved multi-valued version
of script.rugged used in SIS.

EBD | EBD MV MV

circuit time | lits-ff | time | lits-ff
vg2 2.9 87 2.6 85

sse 2.1 128 2.2 120

b12 2.4 70 2.3 70

cht 1.8 163 1.9 164
sqrt8 1.1 67 1.2 56
clip 5.3 134 7.6 129
duke2 10.7 497 24.6 488
sand 23.6 545 47.5 525
f51m 1.8 108 2.4 97
sao02 2.4 109 4 110
term1 5.2 147 6.2 142
9sym 3 72 4.6 120
alu2 12.5 266 19.4 278

sct 1.9 83 2 90

t481 14.2 36 63.9 40
ttt2 3.1 233 4.4 221

bw 3.2 194 4.4 194
rd84 5.3 87 9.5 106
squarb 1.4 58 1.4 58
z4ml 1.2 38 1.4 38
C432 46.3 185 49.3 195
planet 24.7 605 63.5 611
vda 32.3 763 96 i

cps 93.3 | 1479 | 364.1 | 1524
dk16 7.0 248 9.3 238
S953 18.6 510 29.6 516
k2 || 269.2 | 1426 | 3351 | 1428
balance 8.1 182 84.1 217
conv35cc 1.2 83 1 72
employ1l 1.7 42 1.5 36
mm3 0.9 23 0.8 23
mmb 5.3 137 8.5 130
pal3x 4 114 4.5 100
aluack 1.4 91 1.4 76
iris 1.3 12 1.3 12
mm4 2 75 2.3 60
monks2tr 1.2 51 1.2 43
monksltr 0.9 7 0.8 7
sleep 36.6 33 63.7 37
car 1.2 43 1.3 44

Table 1: Comparison of EBD and MV scripts

8.
(1]

[10]

REFERENCES

R. K. Brayton. Algebraic methods for multi-valued
logic. Technical Report UCB/ERL M99/62,
Electronics Research Laboratory, University of
California, Berkeley, Dec. 1999.

R. K. Brayton and et al. MVSIS.
http://wuw-cad.eecs.berkeley.edu/Respep/
Research/mvsis/.

R. K. Brayton, G. D. Hachtel, C. T. McMullen, and
A. L. Sangiovanni-Vincentelli. Logic Minimization
Algorithms for VLSI Synthesis. Kluwer Academic
Publishers, 1984.

S. Devadas and A. R. Newton. Exact Algorithms for
Output Encoding, State Assignment, and Four-Level
Boolean Minimization. IEEE Trans. Comput.-Aided
Design Integrated Circuits, 10(1):13-27, Jan. 1991.
M. Gao and R. K. Brayton. Semi-algebraic methods
for multi-valued logic. In Proc. of the Intl. Workshop
on Logic Synthesis, May. 2000.

M. Gao and R. K. Brayton. Multi-valued multi-level
network decomposition. In Proc. of the Intl. Workshop
on Logic Synthesis, June 2001.

T. Kam and R. K. Brayton. Multi-valued decision
diagrams. Technical Report UCB/ERL M90/125,
Electronics Research Lab, Univ. of California,
Berkeley, CA 94720, Dec. 1990.

L. Lavagno, S. Malik, R. Brayton, and

A. Sangiovanni-Vincentelli. MIS-MV: Optimization of
multi-level logic with multiple-valued inputs. In
Proceedings of the International Conference on
Computer-Aided Design, 1990.

A. Malik, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli. A Modified Approach to
Two-level Logic Minimization. In Proc. of the Intl.
Conf. on Computer-Aided Design, pages 106—109,
Nov. 1988.

H. M. Wang, C. L. Lee, and J. E. Chen. Algebraic
division for multi-level logic synthesis of multi-valued
circuits. In International Symposium on

Multiple- Valued Logic, 1994.

