Low-Level Verification of
Embedded Software:
- Addressing the Challenge

Sanjit A. Seshia

Assistant Professor
EECS, UC Berkeley

FMCAD 2010 Panel

October 2010

Abstraction Layers in Computing

Algorithms, Protocols, Models
A \

Application Software

\4

Systems Software / Firmware

b

Architecture

!

Circuits

!

Devices

What makes Software “Low-Level”?
(from Verification perspective)

m Properties

m Software Is low-level if the behavior
of the software system is defined
significantly by lower levels of
abstraction (hardware platform)

m “Hardware-Software Verification” ?

Quantitative Analysis / Verification

Does the brake-by-wire software
always actuate the brakes within
1 ms?

Safety-critical embedded systems

Can this new app drain my
IPhone battery in an hour?
Consumer devices

How much energy must the sensor
node harvest for RSA encryption?
Energy-limited sensor nets,

bio-medical apps, etc. 4

Cyber-Physical Systems (CPS):) SO - Transportation

. - (Air traffic
Orchestrating networked computation [

with physical systems ST SFO)

Automotive

x i
15 g
/' Instrumentation

B

P Factory automation
ower = w, N
; . - e P o eyl
/- generation and AT '

~/ /! distribution

Courtesy of S
General Electric Courtesy of Kuka Robotics Corp.

Cyber-Physical Systems (CPS): R ISLORY A (TArgntspf?_rtation
: I ir traffic
: y | "> control at

Orchestrating networked computation
with physical systems

Automotive

EEEEEE
ccccccccccccccccc

1<
y_{/ Instrumentation

B

Factory automation

—
it

E-Corner, Slemeﬁ‘_ o e “““’””DE EEJ

Power
/= generation and

General Electric Courtesy of Kuka Robotics Corp.

Courtesy of

Time Is Central to Cyber-Physical Systems

Several timing analysis problems:
Worst-case execution time (WCET) estimation
Estimating distribution of execution times

Threshold property: can you produce a test case
that causes a program to violate its deadline?

Software-in-the-loop simulation: predict
execution time of particular program path

Challenge: Environment Modeling
(Timing Analysis)

m Timing properties of the Program depend heavily
on its environment

m Environment =
Processor & Memory Hierarchy

+ Operating System, other processes/threads, ...
+ Network

+ 1/O Devices
+ ...

s Modeling the full environment is hard!

m However, we need a ‘reasonably’ precise
environment model

— Unlike traditional software verification

Success of “High-Level” Software
Verification

m From theoretical ideas to industrial practice in
~ 15yrs

Some Reasons:
s Availability of open source software

m Well-defined target problems: Device drivers,
memory safety, security vulnerabilities,
concurrency, ...

m Value of bug finding
m Coarse abstraction of environment OK

Challenge of Timing Analysis: Example

On a single-
core processor
with a data
cache

Timing of an edge (basic
block) depends on:
‘ X Program path it lies on

e Initial platform state

Challenges:

« Exponential number of
paths and platform states!
e Lack of visibility into
platform state

CFG unrolled
to a DAG

Current State-of-the-art for
Timing Analysis

m Program = Sequential,
terminating program

® Runs uninterrupted

PROBLEM:

l Can take several man-

months to construct!

Also: limited to
extreme-case analysis

m Environment =
Single-core Processor +
Memory Hierarchy

Timing Model

Existing Approaches: One-size-fits-all?

= Why construct a
SINGLE timing model
for ALL programs?

m Only interested In

analyzing a specific
program.

= Why not automatically
synthesize a program-
specific timing model?

Promising Direction
(for timing analysis and low-level verification in general)

m Inductive Synthesis

— Automatically generate environment model
through active learning

m Active = Select behaviors from which to learn

m Use core verification technigues (SAT, SMT,

model checking, ...) to generate selected
behaviors

msExample: GameTime for timing analysis of
software

S. A. Seshia and A. Rakhlin, “Quantitative Analysis of Embedded Systems
Using Game-Theoretic Learning”, ACM Trans. Embedded Systems.

Estimating the Distribution of Times for Modular
Exponentiation: predictions from 9 measurements in
blue, actual 256 measurements in red

Fredicted and measured distnbubiong of path lengthe for modexp

Predicted —e—
For StrongARM % o Measured —w—
processor

R adEE

1500 1550 1800 1850 1700 1750 1800
Executien time (eycle count}

Potential Barriers
(from Academic Perspective)

m Lack of Open-Source Benchmarks

— Recent progress in software verification was
driven by wide availability of open-source
software

— More challenging for “low level” software

verification!
— Heavy dependence on platform makes it more
challenging
m Hardware + Software Skills

— Students need cross-cutting skills (or willingness
to learn) to work in this area

Summary

m “Low level” software = Software whose
behavior is significantly defined by hardware

— Hardware-Software Verification?

m Challenge: Environment modeling
— Current manual methods too tedious and error-

prone

m Proposed Approach: Automatic model
generation by Inductive Synthesis

— Active Learning + Traditional verification
techniques (e.g., SAT/SMT)

— One instance: GameTime for timing analysis
of software

— Perhaps a killer app for synthesis methods?

— 20—

