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ABSTRACT
Effective system verification requires good specifications. The lack
of sufficient specifications can lead to misses of critical bugs, de-
sign re-spins, and time-to-market slips. In this paper, we present a
new technique for mining temporal specifications from simulation
or execution traces of a digital hardware design. Given an execution
trace, we mine recurring temporal behaviors in the trace that match
a set of pattern templates. Subsequently, we synthesize them into
complex patterns by merging events in time and chaining the pat-
terns using inference rules. We specifically designed our algorithm
to make it highly efficient and meaningful for digital circuits. In
addition, we propose a pattern-mining diagnosis framework where
specifications mined from correct and erroneous traces are used to
automatically localize an error. We demonstrate the effectiveness of
our approach on industrial-size examples by mining specifications
from traces of over a million cycles in a few minutes and use them
to successfully localize errors of different types to within module
boundaries.

Categories and Subject Descriptors
B.7.2 [Design Aids]: Verification; B.8.1 [Reliability, Testing and
Fault-Tolerance]

General Terms
Algorithms, Experimentation, Verification

Keywords
Formal specification, verification, assertions, diagnosis, debugging,
error localization, post-silicon validation

1. INTRODUCTION
Formal specifications can precisely capture a system’s desired

behavior. One can then leverage verification techniques such as
model checking [8] or assertion-driven simulation to ensure the cor-
rectness of the system. However, the difficulty of manually creating
a complete set of formal properties (assertions) and of maintaining
those properties through design changes and evolution has signifi-
cantly hindered the wide-spread adoption of formal specifications.
There is therefore a need for scalable techniques for automatically
generating formal specifications.

Specification mining, a promising alternative to manually writ-
ing specifications, is the process of extracting specifications, either
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Figure 1: Specification Mining for Verification

statically from the description of a system, or dynamically from
its executions. The mined specifications in turn allow us to better
understand the system, verify its correctness, and manage possi-
ble evolutional changes. In this paper, we present a new approach
to scalably mine recurring patterns from existing simulation traces.
These patterns can then be examined by the engineer to see whether
they match the designer’s intent and can be checked with further
verification. The intuition is that frequent patterns are likely to be
true. Figure 1 illustrates the high-level tool flow. Our tool takes a
set of traces and optionally a user-defined event definition as input,
and generates a set of behavioral patterns which are true in the trace
as output. A trace is a sequence of events ordered by time of occur-
rence. Events in this case are the valuations of a set of signals in a
circuit. Given the trace, we match it to a library of parametric pat-
terns. The matching algorithm is discussed in detail in Section 4.
We also provide a post-processing ranking module to produce a
heuristically-ranked list of the most interesting properties.

Specification mining not only helps to automate coverage-driven
simulation or formal verification, it can also provide useful infor-
mation for diagnosis. We propose a specification mining-based di-
agnosis framework that can be used to simultaneously understand
the error and locate it. Figure 2 shows how our specification-mining
engine is used as a subroutine to determine assertions that distin-
guish between a normal trace and an error trace. Distinguishing
assertions are those that exist in one trace but not in the other. After
finding these patterns, we apply a ranking procedure to pinpoint the
error to the module in which the fault occurs. We show in Section 6
that our technique is able to successfully localize faults in both RTL
(e.g. programming mistakes such as erroneous state machine tran-
sitions) as well as faults that may arise from physical defects (e.g.,
stuck-at or transient faults).

To summarize, we make the following key contributions:
• A new dynamic specification mining technique especially de-

signed for general digital circuits. Our tool SAM (Scalable
Assertion Miner) efficiently mines non-trivial specifications
and is highly scalable: for a design with over 20,000 signals,
over 1000 properties were mined in under a minute;

• A novel trace-diagnosis technique based on specification min-
ing that achieves good localization accuracy for large circuits.

The paper is organized as follows. Section 2 surveys related lit-
erature on specification mining. Section 3 introduces the main con-
cepts and formally defines the problem. Section 4 describes the
algorithms for mining specification in digital circuits. Section 5 de-



Figure 2: Specification Mining for Diagnosis

scribes a pattern-mining based technique for diagnosis. Section 6
presents experimental results. We conclude in Section 7.

2. RELATED WORK
The study of automatically generating specifications goes back

as early as 1974 [6][26]. Many techniques have been recently pro-
posed to automatically reverse-engineer specifications from a pro-
grams [25][16][3][28][15][13]. These specifications can be simple
predicates or temporal specifications which specify the ordering of
events, or rules of API usage. The generated specifications can then
be used to formally verify a program’s correctness, to assist in de-
bug [27], or to detect malicious behaviors [7].

Many techniques seek to learn specifications dynamically from
an execution trace (or a set of traces). Daikon [13] is one of the ear-
liest tools that mine single-state invariants or pre-/post-conditions in
programs. In contrast, we focus on mining temporal properties for
hardware designs in this work. Most existing mining tools produce
temporal properties in the form of automata. Automata-based tech-
niques generally fall into two categories. The first class of methods
learn a single complex specification (usually as a finite automaton)
over a specific alphabet, and then extract simpler properties from
it. For instance, Ammons et al. [3] first produce a probabilistic au-
tomaton that accepts the trace and then extract from it likely prop-
erties. However, learning a single finite state machine from traces
is NP-hard [17]. To achieve better scalability, an alternative is to
first learn multiple small specifications and then post-process them
to form more complex state machines. Engler et al. [11] first intro-
duce the idea of mining simple alternating patterns. Several subse-
quent efforts [16, 27, 28, 15] built upon this work. For example,
Javert [15] locates all instances of the alternating pattern (a b)∗ and
a resource usage pattern (a b∗ c)∗. The tool then composes these
patterns into larger ones by using a set of inference rules. Our work
is similar to Javert, however we focus on additional patterns that are
meaningful for digital circuits and we provide a merging procedure
that composes patterns in time.

Specifications can also be generated by reasoning about the pro-
gram statically. For example, Alur et al. [2] proposes the use of
predicate abstraction together with automata learning to automat-
ically synthesize interface specifications for Java classes. Static
and dynamic analyses complement each other. We refer the read-
ers to [12] for a detailed comparison of the two techniques. Addi-
tionally, we also note that, for hardware designs, static analysis is
particularly challenging because it is difficult to infer causal depen-
dencies between events across multiple cycles from the structure of
the RTL code.

Various circuit-specific mining techniques have been proposed
for hardware-specific properties. The IODINE tool [18] mines sim-
ple likely invariants such as one-hot encodings or fixed-delay pairs.
Fey and Drechsler [14] present an approach to mine repeated pat-
terns where patterns are valuations of signals at various time steps
(e.g. st = 1 ∧ st+1 = 0). While their approach is general, the
timing requirement can be too strict for complex interactions and
it deals with only a small set of signals over a predefined interval
each round. The Dianosis [24] tool mines more complex properties
from simpler properties from an OVL. Isaksen and Bertacco [19]

propose the use of inferred boundary labels to generate transaction
diagrams from a trace. Their methodology is particularly suitable
for analyzing protocols. Our approach mines a class of general tem-
poral properties for digital circuits in a scalable manner and, to our
knowledge, is the first to effectively use these mined properties for
fault diagnosis.

3. CONCEPTS AND DEFINITIONS
This section formally introduces the dynamic specification min-

ing problem for digital circuits and describes the types of patterns
that we mine.

Let S be the set of signals in a digital circuit. Each s ∈ S can
be either a register or a wire. We use vs,t to denote the valuation of
s at time t. (We restrict ourselves to valuations of signals at rising
edges of their corresponding clocks).

Definition 3.1 (Event) An event e is a tuple < ~s,~v, t >, where ~s
is a set of signals and ~v is the corresponding valuations at time t.

Note that we do not define events as assignments of signals across
cycles, but this can be addressed by introducing suitable user-defined
events. The alphabet Σ is the set of distinct events. A trace τ is a
set of events (partially) ordered by their time of occurrence. A slice
η of a trace is defined as the set of events that occur at the same
time. We limit ourselves to finite-length traces in this work.

Definition 3.2 (Projection) The projection π of a trace τ over an
alphabet Σ, π(τ) is defined as τ with all events not in Σ deleted.

Definition 3.3 (Specification Pattern) A specification pattern is
a finite state automaton A = (Q, Σ, δ, q0, F ), where Q is a finite
set of states, Σ is the set of input events, δ : Q → Σ × Q is the
transition function, q0 is the single starting state, and F is the set of
accepting states. A pattern is satisfied over a trace τ with alphabet
Σ ⊇ Σ iff π(τ) ∈ L(A), i.e. the projection of the trace on the
pattern alphabet is in the language of the pattern automaton.

Definition 3.4 (Binary Pattern) A binary pattern is defined as
a specification pattern with an alphabet size of 2. A binary pattern
between events a and b is denoted as a R b.

Our specification pattern miner takes a trace, a set of pattern tem-
plates and optionally a manually-provided event definition as input,
and produces all pattern instances that are satisfied over the trace
as output. In this paper, we focus on the mining of specifications
without an explicit event definition, instead using the notion of a
delta event, defined below.

We adapt our techniques to some special characteristics of dig-
ital circuits to make them both efficient and meaningful. One key
difference between a digital circuit and a software program is that
a digital circuit is a concurrent process, in which multiple events
can occur at every clock cycle. In traditional software specification
mining problems, the size of the problem is relatively small in both
the length of the trace and the size of the event alphabet; in contrast,
we have to handle traces of millions of cycles in length, potentially
thousands of events at every cycle, and generally a large alphabet.
In addition, we need to modify the definition of events to make the
analysis meaningful. For example, an interesting event can be the
start of a request (transition of value 0 to value 1), but the request
signal can stay at 1 for several cycles until a response is received.
We introduce the notion of delta event, formally defined as follows:

Definition 3.5 (Delta Event) A delta event, denoted ∆e, is an
event such that at least one of its constituent signals changes value
from the previous valuation, i.e. e

.
=< ~s,~v, t > such that ∃ vs,t ∈

~v, vs,t 6= vs,t−1.
In mining patterns, we restrict ourselves to delta events. Our

mined patterns can be expressed succinctly in linear temporal logic
(LTL) [21] or as regular expressions. For example, we can express
that every request must be eventually followed by a grant as “G
(request → F grant)” in LTL, where the operator G specifies that
globally at every point in time a certain property holds, and F spec-
ifies that a property holds either currently or at some point in the
future. The binary patterns mined by our tool are listed below.

Alternating (A) An alternating pattern between two delta events
∆a and ∆b is true when each occurrence of ∆a alternates with an
occurrence of ∆b. Note that this does not mean ∆b follows ∆a
immediately in the next cycle. This pattern can be described by



the regular expression (∆a ∆b)∗. We denote this pattern as a A b.
Figure 3 shows the corresponding finite automaton (self-transitions
are such that the automaton is deterministic).

Until (U) The until pattern can be used to describe behaviors
such as “the request line stays high until a response is received.”
Figure 4 shows a trace where this pattern is satisfied. Formally, the
LTL formula is “G (∆a → X (a U ∆b)).”

Figure 3: Finite Automaton for the Alternating Pattern

Figure 4: Request stays high until a response is received.

Next (X) The next pattern corresponds to the LTL formula “G(∆a →
X∆b).” We denote it as aX b. Note that aX b implies aU b. One
can easily generalize this pattern to fixed-delay pairs.

Eventual (F) The eventual pattern can be described by the LTL
formula “G (∆a → X F ∆b).” We denote this as a F b. Note
that a A b, a U b and a X b all imply a F b. Since typically many
such patterns appear in a trace, the user can put a lowerbound on the
number of times that it appears and an upperbound on the time of
separation between the two events base on their knowledge of the
design, to extract more relevant behaviors. We also output a X b
from a F b based on the timing bounds.

Timing bounds are often crucial to specify a behavior. For ex-
ample, a system may require every two requests to be separated by
at least 3 cycles and the response to be received within 5 cycles of
issuing a request. In this work, we track such timing bounds during
the mining of patterns.

Our tool first mines all binary pattern instances that are satisfied
over the trace given the templates. Subsequently, the simple pat-
terns are merged in time and then synthesized to form more com-
plex patterns using the inference rules. These procedures are de-
scribed in detail in Section 4.2.

4. MINING ALGORITHMS
We exploit the highly modular nature of hardware design to keep

the problem tractable. For scalability, we partition the trace by mod-
ule into many disjoint sub-traces and analyze them separately. The
rest of this section describes our techniques in detail. Section 4.1
describes the mining algorithm. Section 4.2 describes how com-
plex specifications can be synthesized. Section 4.3 discusses some
useful specification ranking metrics.

4.1 Specification Mining
We adopt the approach of mining small automata. Gabel and

Su [16] formalized the problem of mining parameteric patterns such
as the alternating pattern we consider (but not general LTL) and
showed that it is NP-hard through reduction from the Hamiltonian
Path problem. Therefore, it makes sense to mine patterns with a
small pattern alphabet size to avoid the potential worst-case expo-
nential blow-up. Their approach builds on that of Perracotta [28]
which requires O(nk) space and O(nk−1l) time for an input al-
phabet size of n, a pattern alphabet size of k, and a trace of length

l. Gabel and Su also propose the use of Binary Decision Diagrams
(BDDs) [5] to improve the tractability of the problem. However,
while they show some speed-up using the symbolic technique, the
input alphabet size is still limited in practice to 3. In addition, the
performance of BDD-based techniques depends heavily on having
a good variable ordering, and finding the optimum variable ordering
is again NP-hard [4].

Our algorithm mines binary patterns with timing bounds as dis-
cussed in Section 3. We adopt the approach in [28] but extend it
to handle traces with multiple events at the same cycle and to mine
richer binary patterns. The algorithm is briefly outlined below. All
the events are delta events here, which we write just as e. The al-
gorithm for mining a R b is shown below, where a and b are events
that contain a single binary variable, and R denotes one of A, X,
F, or U.

Algorithm 1 Mine a R b

1: τ∆ = Preprocess(τ )
2: {τ1, . . . , τM} = Modularize(τ∆)
3: for each τm ∈ {τ1, . . . , τM} do
4: S = Create_Event_List(τm)
5: T = Allocate_Pattern_Table(S)
6: for each slice η ∈ τm do
7: Update(T ,η,R)
8: end for
9: Output_Patterns(T )

10: end for

The main data structure used by the algorithm is the pattern table
T . We have one pattern table for each module m and each pattern
type R. Table T has as many rows (and columns) as the number of
delta events for module m. While simulating the pattern automa-
ton for ei R ej , the entry (i, j) in T stores the current state of the
automaton.

The algorithm works as follows. We first preprocess the trace
into a delta event trace (line 1). We then partition the trace into a set
of traces according to the module tree and analyze them separately
(line 2). This allows us to effectively cope with the memory over-
head of allocating a quadratic space for the pattern table T (lines 5).
In our tool, one can heuristically choose the level of modularization
– small sub-modules are merged so that the mined specifications
are not too local. Next, the algorithm updates the associated pat-
tern automaton according to the type of binary relations R for each
slice of the trace (lines 7). We first update row e R ∗, ∀e ∈ η,
then update column ∗R e, ∀e ∈ η. The update rule is determined
by the transition function of the finite-state automaton correspond-
ing to R. One feature of our work that is different from [28] is that
since we are mining from a concurrent process, there are normally
multiple events at the same slice. When performing iterative row
and column updates on the pattern table, we need to avoid updating
the same entry multiple times at the same cycle that have already
been processed in the current cycle. Figure 5 illustrates this con-
cept when the current slice contains events ei and ei+1. Notice that
when updating T for ei+1, the entry (i, i + 1) remains unchanged
because ei was already processed. During the update procedure, we
also compute timing bounds on-the-fly for each pattern.
Complexity: Given an input trace τ with signals s1, s2 . . . sN , the
preprocessing step converts the trace to a delta event trace τ∆ with n
delta events. This greatly enhances the scalability of our technique
because typically |τ∆| � |τ | and n � |Σi2

|si||. Modularization
further decomposes the problem such that in a design with M mod-
ules, for each module m we mine from a trace τm(|τm| ≤ |τ∆|),
each with nm(nm < n) delta events. Hence, the final algorithm
requires O(ñ2

m) space and O(Σmqnm|τm|) time, where ñm is
maxmnm and q is the average number of delta events per slice.

4.2 Specification Summarization
Specification summarization eliminates redundant specifications

and helps users to understand specifications better. We perform
three summarization procedures – event merging, pattern chaining
and graph composition.



Pattern Merging: We first merge patterns by matching their
time of occurrence and conjoining events that always occur to-
gether. For example, if both (∆a∆b)∗ and (∆a∆c)∗ are true at the
same time points, and ∆b and ∆c always occur at the same time,
we can merge them to form (∆a (∆b ∧∆c))∗. During the pattern
mining phase, we maintain a timestamped list of occurrences for the
events in each pattern. Alternative, one can re-simulate the mined
patterns on the trace to obtain the timestamps progressively. These
lists are processed during the pattern merging phase by first parti-
tioning the set of patterns into mergeable subsets, and then merging
the patterns within each partition by conjoining events that always
appear together. The algorithm is outlined below.

Algorithm 2 Merge Patterns
1: P : list of pattern instances
2: Lp : list of timestamps of p ∈ P
3: indp :index of the current timestamp in Lp

4: mint : min {Lp[indp]}, ∀p ∈ P
5: function Partition(P )
6: if (|P | = 1) ∨ (indp = |Lp|, ∀p ∈ P ) then
7: return {P}
8: else if ∃p, indp = |Lp| then
9: return append({p|indp = |Lp|}, Partition({p|indp 6=

|Lp|})
10: else
11: P ′ = {p|Lp[indp] = mint})
12: ∀p′ ∈ P ′, indp′ = indp′ + 1
13: return append(Partition(P ′), Partition({p|Lp[indp] 6=

mint}))
14: end if
15: end function
16: function Merge(P )
17: {P1, . . . , Pk} = Partition(P )
18: Merge events to form a single pattern in each Pi

19: end function

The algorithm essentially first partitions the patterns into sets of
patterns such that the occurrences of events all match in time for
each set, and then merge these patterns into a single one. The pat-
tern merging procedure is particularly useful when no event defi-
nition is manually provided. A hardware module in a typical CPU
core can have hundreds of signals running in parallel and many
of them are highly correlated. In Section 6, we demonstrate that
this simple recursive procedure significantly reduces the number of
mined specifications and in practice generates better quality speci-
fications for the end user.

Figure 5: Iterative Row and Column Updates in T for ei R ej

Pattern Chaining: After we merge the patterns in parallel, we
repeatedly apply a set of inference rules to the results to obtain even
more complex patterns. The current inference rules for chaining
binary relational patterns are illustrated below.

Alternating Pattern Chaining Rule (adapted from [15]):
(∆a ∆b)∗ (∆b ∆c)∗ (∆a ∆c)∗

(∆a ∆b ∆c)∗

Eventual Pattern Chaining Rule:
G (∆a → (X F b)) G (∆b → (X F ∆c))

G (∆a → X F (∆b → X F ∆c))
Until Pattern Chaining Rule:

G (∆a → X (aU ∆b)) G (∆b → X (bU ∆c))

G (∆a → X (aU (bU c)))

Graph Composition: We further graphically compose the re-
sulting patterns. In each graph, a node represents an event and an
edge from node a to node b represents a binary pattern aRb. Every
disjoint sub-graph represents a complex behavior amongst its con-
stituent events. In Section 6, we will show that such visualization
helps in understanding the behaviors of a design.

4.3 Specification Ranking
The process of merging and chaining also allows us to further

sieve through the set of specifications for the most interesting ones.
For example, if one is interested in complex interactions, we can
output only patterns with alphabet size greater than a user-specified
threshold. In our tool, we also rank patterns according to their fre-
quency of occurrences , time of first occurrence and statistics (e.g.
variance) in terms of separation between constituent events.

5. FAULT DIAGNOSIS
We now consider the problem of debugging an error given a set

of correct traces and a single error trace. Our goal is to localize
the error to the part of the circuit where the error occurred. For
transient errors, another goal is to localize in time, i.e., to find the
approximate time of occurrence of a transient error. One poten-
tial application is post-silicon debugging where bugs are difficult to
diagnose due to limited observability, reproducibility, and possible
dependence on physical parameters.

A number of diagnosis approaches have been proposed in the
classic AI literature. As observed by Console et al [9], these ap-
proaches either require models that describe the correct behavior of
the system or they need models for the abnormal (faulty) behaviors.
Our approach is similar to the consistency-based methods [10]. In
the traditional consistency-based reasoning approach, if a system
can be described using a set of constraints, then diagnosis can be
accomplished by identifying the set (often minimal) of constraints
that must be excluded in order for the remaining constraints to be
consistent with the observations. While this approach does not re-
quire knowledge of how a component fails (a fault model), it re-
quires a reasonably complete specification of the correct system. In
the EDA literature, while there has been substantial work on fault
diagnosis and debugging, to our knowledge none of the work has
made use of automatically mined specifications.

Our approach is similar to the consistency-based method but we
do not need to start with a set of specifications. Instead, we mine
specifications from traces and use them to localize the errors. Our
approach does not directly make use of the RTL description for di-
agnosis (other than the module hierarchy), which makes it scalable
and appealing for post-silicon debug. In addition, we do not need
to time-align the correct traces with the incorrect trace. The trace
diagnosis problem can be described as the following:

Given a correct trace τ jointly produced by a set of modules M ,
and an incorrect trace τ ′ over the same alphabet Σ produced by M ′

such that some m ∈ M ′ is erroneous (different from its counterpart
in M ), the diagnosis task is to localize the error to m.

We assume that the error is detectable at the system level. This
means that there exists a mechanism to label a trace (erroneous or
otherwise) with respect to some correctness criteria. Typically, such
a mechanism relies on checking some end-to-end behaviors or ob-
serving whether an exception is thrown in software.

Consistency is defined with respect to the specifications mined
from the correct trace. Specifically, consistency is violated if

• A pattern is observed in the error trace but it fails at some
point in the correct trace; or

• A pattern is observed in the correct trace but it fails at some
point in the error trace.

A pattern that violates consistency is termed a distinguishing pat-
tern. An error can propagate to other modules and in turn cause
more erroneous behaviors later. In light of this, we rank the mined
distinguishing patterns by the time of first violations – the point
where a pattern is expected to hold but does not. The module which
the top ranked pattern belongs to gives the localization result. The
time of the pattern’s first violation also gives the time-localization



in the case of transient faults. Since the pattern itself describes a
specific erroneous behavior, our approach not only localizes the er-
ror, but can also produces useful insights about the error.

6. EXPERIMENTAL RESULTS
We have implemented the proposed approach in a tool called

SAM (Scalable Assertion Miner). In this section, we present case
studies illustrating that our approach has the following desirable
characteristics:

• Scalable: We can mine specifications from traces that are
millions of cycles long, with thousands of signals, all within
two minutes.

• Effective for diagnosis: In fault injection experiments, our
mined specifications correctly localized the fault to within
module boundaries.

• Relevant: The learned specifications, after the summariza-
tion procedure, are sufficiently high-level so as to be useful
to designers.

We use ModelSim to simulate the designs and to record the trace
as a VCD dump file (which already extracts delta events). The ex-
periments are run on a netbook with an Intel Atom 1.60 GHz pro-
cessor and 1.0 GB of RAM.

Benchmarks: We used 4 benchmarks in our experiments. The
first is the MIPS core in the extensible MIPS processor developed
by Pittman et al [23]. eMIPS is a dynamically extensible processor
architecture based on the MIPS R4000 instruction set. The design
has 278 modules and contains more than 20000 signals. Router is a
chip-multiprocessor router designed by Peh [22]. We use a simpli-
fied 2-port version with 14 modules here. I2C and CAN are the I2C
interface and CAN interface designs obtained from Opencores [1].

Experiments: In our experiments, we only track latches with
width less than 5. This is a simple heuristic to quickly prune away
the various data paths, because we do not start with a manual event
definition.

Scalability: The first experiment is meant to evaluate both the ef-
ficiency of our specification mining algorithm and the usefulness of
the specification compaction procedure. We simulated each of the
benchmarks on the default testbench supplied with it to generate
one very long trace for that benchmark. Then we applied our min-
ing tool to the resulting trace. (Applying our tool to multiple traces
will yield similar results.)

Table 1 gives the statistics for our performance experiments.

|τ | |τ∆| ñm |S| |Sm| Rt(s)
eMIPS 5.0× 106 5408 108 2079 1028 51
Router 2.3× 105 12420 28 120 74 13

I2C 1.6× 106 20904 33 389 308 9
CAN 2.6× 107 36100 175 3272 1356 71

Table 1: Performance Results
|τ | is the size of the original trace. |τ∆| and ñm are the aver-

age length of delta traces and the maximum number of delta events
per module respectively. |S| is the total number of specifications
mined before any compaction is performed. |Sm| is the total num-
ber of specifications resulting from applying the parallel merging
and chaining procedures. Rt is the overall runtime of the tool for
each benchmark in seconds.

As we can observe, the transformation to a delta trace reduces
the length of the trace by about 1000X. Moreover, the modulariza-
tion then reduces the number of delta events to be processed by our
algorithm to at most 175 (and only 9-16 on average). The origi-
nal number of specifications we generate is in the few thousands,
but merging can reduce this number by 2X. The run-times are very
small – less than 2 minutes for all benchmarks.

Relevance: Figure 7 shows part of an example specification (af-
ter all the composition procedures have been performed) mined in
the “vcstate” module for the CMP router. This module contains a
state machine that controls the handshake with the arbiter and the
decision to move the flits in the buffer to the corresponding output

channels. Figure 6 shows the actual behavior of the state machine.
The number after the colon corresponds to the value of the sig-
nal. Together they constitute an event (in this case a delta-event).
State_status corresponds to the state in the input controller state
machine.

Figure 6: State Machine in the “vcstate” Module

In the mined patterns, we can see that for example, State_swreq
always stays at 2b10 (requesting output channel 1) until State_status
moves to 2b10. In fact, it stays high until State_queuelen (which
registers the number of flits in the buffer) goes to 0. If State_queuelen
goes to 0, then State_status eventually goes back to its initial state
2b11. Due to the particular configuration of this router and the test
bench, with a buffer size of 4, a data packet consisting of a head, a
body and a tail, and the frequency of packet injection at about 0.23,
the specification captures the behavior correctly – a data packet (3
flits) comes in and fills up the buffer; the head flit triggers a re-
quest and before another packet comes to the same input channel,
it manages to secure an output channel and the entire packet gets
dequeued through that channel. Although the quality of the speci-
fication depends heavily on the quality of the simulation trace, the
mined specifications are still useful since it can indicate the parts of
behaviors that the current test-bench has covered, allowing future
endeavors to be directed to the uncovered behaviors quickly, e.g.
test with different router configurations and traffic patterns.

Figure 7: Example Mined Specification from the CMP Router

Fault Diagnosis: In the second set of experiments, we syntacti-
cally injected faults into the designs and then used our mining-
based diagnosis approach to localize the fault. Readers can refer
to [20] for a full set of diagnosis results. We discuss the experi-
ments on the eMIPS processor and the CMP router here in detail.

eMIPS Processor. The faults we injected included single-bit er-
rors, multiple-bit errors, and erroneous state transitions. In the first
case, we inverted the “dne_r” signal in the BlockRAM Controller
from 1b0 to 1b1. In the second, we changed the “we_r” signal
in the BlockRAM Interface module from 4b0 to 4b6. In the last
case, we changed the “rdstate” signal conditionally in the Regis-
ter_File_Read module from 2b00 to 2b10 when it is in state 2b01.
This represents an erroneous transition in a state machine. We pro-
duced from each case an error trace of 1 million cycles, which is
also approximately 1 million cycles before the error failed some
system-level end-to-end specification. In all three fault injection
experiments, our diagnosis technique ranked the faulty module as
a top candidate among the 278 modules. However, on average 6
other modules are also ranked as top candidates. This is due to the
fact that some signals in these modules are combinational output of



Type of Fault Nf CovA Localt Localm
stuck-at 5 100% – 100%

erroneous transition 3 100% – 100%
erroneous assignment 7 100% – 57%

transient 16 100% 81% 56%

Table 2: Diagnosis Results on the CMP Router

the error, and these signals in turn violated some local properties
mined in their modules. While it is possible to overcome this by
tracking only the registers, the tradeoff is that since we track less
signals, we will lose some behavioral coverage.

CMP Router. With the same configuration of the Router used in
the specification mining experiments, we use a testbench with ran-
dom packet generation at the input but with a fixed traffic pattern.
The same testbench is used to generate both the correct trace and
the faulty trace. This time, our mined specifications only covered
signals that are registers. We inject different types of faults into the
router, including stuck-at faults on wires and registers, erroneous
transition in state machines, erroneous assignment (syntactical) for
wires and registers, and single transient errors in registers. Table 2
shows the results of our diagnosis. Nf is the number of fault injec-
tion experiments that were performed for each type of fault. CovA

is the percentage of times that the assertions mined from the cor-
rect trace is falsified by the error trace — this is a form of assertion
coverage. Localt (for transient errors) is the percentage of times
that error was trapped by some distinguishing pattern within after
15 cycles of the transient error – this measures localization in time.
Finally, Localm is the percentage of times that our diagnosis re-
turned the correct module where the error occurred – this measures
localization in space.

As we observe, the technique has perfect assertion coverage, lo-
calizes transient errors well in time, and more than 50% of the
time, the top-ranked assertion gives perfect localization in space
also. For example, the assertion “G ((state_queuelen = 2) → XF
(state_swreq = 0))” is the distinguishing pattern that successfully
trapped a transient error in the “state_status[0]” signal and returned
the correct module localization, even though the distinguishing pat-
tern does not contain the error signal.

7. CONCLUSION
We have proposed a scalable specification-mining tool that is

suitable for general digital circuits. In addition, we have shown that
our mined specifications are effective for fault diagnosis. Evalua-
tion shows that (a) the mining algorithm is practical, requiring only
minutes of computation even for a very large-scale example, (b) for
human benefit, the mined specifications can be automatically com-
pacted by a significant factor, (c) the diagnostic use is effective in
pinpointing the error location to the correct module when program-
ming mistakes and hardware faults are applied to the benchmarks.

An inherent limitation of dynamic specification mining is that
the quality of the specification mined is only as good as the set of
traces. In the case of digital circuits, we can leverage techniques in
coverage-directed testing to simulate many behaviors as fast as pos-
sible. An alternative to using coverage tools is to improve the mined
specifications online, as the circuit runs in a testing or production
mode on real workloads. For example, in a testing mode one can
prototype the circuit on a piece of reconfigurable logic and itera-
tively generate online assertion checkers for specifications mined
from each trace. Online monitoring and refinement of properties
will be interesting directions for future work.
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